【題目】蔬菜基地種植了娃娃菜和油菜兩種蔬菜共畝,設(shè)種植娃娃菜畝,總收益為萬元,有關(guān)數(shù)據(jù)見下表:

成本(單位:萬元/畝)

銷售額(單位:萬元/畝)

娃娃菜

2.4

3

油菜

2

2.5

1)求關(guān)于的函數(shù)關(guān)系式(收益 = 銷售額 成本);

2)若計劃投入的總成本不超過萬元,要使獲得的總收益最大,基地應(yīng)種植娃娃菜和油菜各多少畝?

3)已知娃娃菜每畝地需要化肥kg,油菜每畝地需要化肥kg,根據(jù)(2)中的種植畝數(shù),基地計劃運送所需全部化肥,為了提高效率,實際每次運送化肥的總量是原計劃的倍,結(jié)果運送完全部化肥的次數(shù)比原計劃少次,求基地原計劃每次運送多少化肥.

【答案】(1);(2)基地應(yīng)種植娃娃菜畝,種植油菜畝;(3)基地原計劃每次運送化肥·

【解析】

1)根據(jù)種植郁金香和玫瑰兩種花卉共30畝,可得出種植玫瑰30-x畝,再根據(jù)總收益=郁金香每畝收益×種植畝數(shù)+玫瑰每畝收益×種植畝數(shù)即可得出y關(guān)于x的函數(shù)關(guān)系式;
2)根據(jù)投入成本=郁金香每畝成本×種植畝數(shù)+玫瑰每畝成本×種植畝數(shù)以及總成本不超過70萬元,可得出關(guān)于x的一元一次不等式,解不等式即可得出x的取值范圍,再根據(jù)一次函數(shù)的性質(zhì)即可解決最值問題;
3)設(shè)原計劃每次運送化肥mkg,實際每次運送1.25mkg,根據(jù)原計劃運送次數(shù)比實際次數(shù)多1,可得出關(guān)于m的分式方程,解分式方程即可得出結(jié)論.

解:(1)由題意得;

2)由題意知,解得

對于,∵,∴的增大而增大,

∴當(dāng)時,所獲總收益最大,此時.

答:基地應(yīng)種植娃娃菜畝,種植油菜畝;

3)設(shè)原計劃每次運送化肥,實際每次運送

需要運送的化肥總量是

由題意可得

解得.

經(jīng)檢驗,是原分式方程的解.

答:基地原計劃每次運送化肥·

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B=60°,BC=6,EBC中點,FAB上一點,GAD上一點,且BF=2,FEG=60°,EGAC于點H,下列結(jié)論①△BEF∽△CHE;AG=1;EH=;SBEF=3SAGH;正確的是______.(填序號即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐 問題情境:

綜合與實踐課上,同學(xué)們以“三角形紙片的折疊與旋轉(zhuǎn)“為主題展開數(shù)學(xué)活動,探究有關(guān)的數(shù)學(xué)問題.

動手操作:

已知:三角形紙片中,.將三角形紙片按如下步驟進行操作:

第一步:如圖1,折疊三角形紙片,使點與點重合,然后展開鋪平,折痕分別交于點,連接,易知

第二步:在圖1的基礎(chǔ)上,將三角形紙片沿剪開,得到.保持的位置不變,將繞點逆時針旋轉(zhuǎn)得到(分別是的對應(yīng)點),旋轉(zhuǎn)角為問題解決:

1)如圖2,小彬畫出了旋轉(zhuǎn)角時的圖形,設(shè)線段交于點,連接.小彬發(fā)現(xiàn)所在直線始終垂直平分線段.請證明這一結(jié)論;

2)如圖3,小穎畫出了旋轉(zhuǎn)角時的圖形,設(shè)直線與直線相交于點,連接判斷此時的形狀,說明理由;

3)在繞點逆時針旋轉(zhuǎn)過程中,當(dāng)時,請直接寫出兩點間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊的邊長為8,是中線上一點,以為一邊在下方作等邊,連接并延長至點上一點,且,則的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時出發(fā),乙先到達目的地.兩人之間的距離(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示.其中說法正確的是(

A.甲的速度是60/分鐘B.乙的速度是80/分鐘

C.的坐標(biāo)為D.線段所表示的函數(shù)表達式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠ADC=90°,AD=8,CD=6AB=26,BC=24

1)試說明:ABC是直角三角形.

(2)請求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在正方形中,點分別在、上,且

1)試探索線段、的關(guān)系,寫出你的結(jié)論并說明理由;

2)連接,分別取、、的中點、、,四邊形是什么特殊平行四邊形?請在圖②中補全圖形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)興趣小組活動中,李燕和劉凱兩位同學(xué)設(shè)計了如圖所示的兩個轉(zhuǎn)盤做游戲(每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字.游戲規(guī)則如下:兩人分別同時轉(zhuǎn)動甲、乙轉(zhuǎn)盤,轉(zhuǎn)盤停止后, 若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于 12,則李燕獲勝;若指針?biāo)竻^(qū)域內(nèi)兩數(shù)和等于 13,則劉凱獲勝(若指針停在等分線上,重轉(zhuǎn)一次,直到指針指向某一份內(nèi)為止).

(1)請用列表或畫樹狀圖的方法表示出上述游戲中兩數(shù)和的所有可能的結(jié)果;

(2)游戲?qū)﹄p方公平嗎?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案