【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點落在邊AD上的E處,折痕為PQ,過點E作EF∥AB交PQ于F,連接BF.
(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點E在AD邊上移動時,折痕的端點P、Q也隨之移動;
①當(dāng)點Q與點C重合時(如圖2),求菱形BFEP的邊長;
②若限定P、Q分別在邊BA、BC上移動,求出點E在邊AD上移動的最大距離.
【答案】
(1)
證明:∵折疊紙片使B點落在邊AD上的E處,折痕為PQ,
∴點B與點E關(guān)于PQ對稱,
∴PB=PE,BF=EF,∠BPF=∠EPF,
又∵EF∥AB,
∴∠BPF=∠EFP,
∴∠EPF=∠EFP,
∴EP=EF,
∴BP=BF=EF=EP,
∴四邊形BFEP為菱形
(2)
解:①∵四邊形ABCD是矩形,
∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,
∵點B與點E關(guān)于PQ對稱,
∴CE=BC=5cm,
在Rt△CDE中,DE= =4cm,
∴AE=AD﹣DE=5cm﹣4cm=1cm;
在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,
∴EP2=12+(3﹣EP)2,
解得:EP= cm,
∴菱形BFEP的邊長為 cm;
②當(dāng)點Q與點C重合時,如圖2:
點E離點A最近,由①知,此時AE=1cm;
當(dāng)點P與點A重合時,如圖3所示:
點E離點A最遠(yuǎn),此時四邊形ABQE為正方形,AE=AB=3cm,
∴點E在邊AD上移動的最大距離為2cm
【解析】(1)由折疊的性質(zhì)得出PB=PE,BF=EF,∠BPF=∠EPF,由平行線的性質(zhì)得出∠BPF=∠EFP,證出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出結(jié)論;(2)①由矩形的性質(zhì)得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由對稱的性質(zhì)得出CE=BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD﹣DE=1cm;在Rt△APE中,由勾股定理得出方程,解方程得出EP= cm即可;②當(dāng)點Q與點C重合時,點E離點A最近,由①知,此時AE=1cm;當(dāng)點P與點A重合時,點E離點A最遠(yuǎn),此時四邊形ABQE為正方形,AE=AB=3cm,即可得出答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點A、B分別在邊OM,ON上,當(dāng)B在邊ON上運(yùn)動時,A隨之在OM上運(yùn)動,矩形ABCD的形狀保持不變,其中AB=2,BC=1,運(yùn)動過程中,點D到點O的最大距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實驗探究:
(1)如圖1,對折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點A落在EF上,并使折痕經(jīng)過點B,得到折痕BM,同時得到線段BN,MN.請你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論.
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,探究MN與BM的數(shù)量關(guān)系,寫出折疊方案,并結(jié)合方案證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=90°,AD⊥BC,垂足為點 D.下列說法中:①∠B的余角只有∠BAD;②∠B=∠C;③線段 AB 的長度表示點 B 到直線 AC 的距離;④AB·AC=BC·AD;一定正確的有( )
A. 1 個 B. 2 個 C. 3 個 D. 4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠C=90°,D為BC的中點,以AC為直徑的⊙O交AB于點E.
(1)求證:DE是⊙O的切線;
(2)若AE:EB=1:2,BC=6,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.從下列四個條件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三個為條件,余下的一個為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是以原點為圓心,2 為半徑的圓,點P是直線上y=﹣x+8的一點,過點P作⊙O的一條切線PQ,Q為切點,則切線長PQ的最小值為( )
A.4
B.2
C.8﹣2
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)(﹣2xy2)23x2y÷(﹣x3y4)
(2)(2x+y)(2x﹣3)﹣2y(x﹣1)
(3)3(m+1)2﹣5(m+1)(m﹣1)+2(m﹣1)2
(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,點D、E分別在AB、AC上,且CD于BE相交于點F,已知△BDF的面積為12,△BCF的面積為16,△CEF的面積為12,則四邊形ADFE的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com