【題目】如圖,在△ABC中,∠A=30°,∠C=90°,AB=12,四邊形EFPQ是矩形,點P與點C重合,點Q、E、F分別在BC、ABAC上(點E與點A、點B均不重合).

(1)當(dāng)AE=8時,求EF的長;

(2)設(shè)AEx,矩形EFPQ的面積為y

yx的函數(shù)關(guān)系式;

當(dāng)x為何值時,y有最大值,最大值是多少?

(3)當(dāng)矩形EFPQ的面積最大時,將矩形EFPQ以每秒1個單位的速度沿射線CB勻速向右運動(當(dāng)點P到達點B時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求St的函數(shù)關(guān)系式,并寫出t的取值范圍.

【答案】(1)4;(2)①y=﹣x2+3x(0<x<12);x=6時,y有最大值為9;(3)S=

【解析】

(1)EFBC,可得,由此即可解決問題;

(2)①先根據(jù)點EAB上一點得出自變量x的取值范圍,根據(jù)30度的直角三角形的性質(zhì)求出EFAF的長,在在RtACB,根據(jù)三角函數(shù)求出AC的長,計算FC的長,利用矩形的面積公式可求得S的函數(shù)關(guān)系式;

②把二次函數(shù)的關(guān)系式配方可以得結(jié)論;

(3)分兩種情形分別求解即可解決問題.

解:(1)RtABC中,∵AB=12,A=30°,

BC=AB=6,AC=BC=6,

∵四邊形EFPQ是矩形,

EFBC,

=

=,

EF=4.

(2)①∵AB=12,AE=x,點E與點A、點B均不重合,

0<x<12,

∵四邊形CDEF是矩形,

EFBC,CFE=90°,

∴∠AFE=90°,

RtAFE中,∠A=30°,

EF=x,

AF=cos30°AE=x,

RtACB中,AB=12,

cos30°=

AC=12×=6,

FC=AC﹣AF=6x,

y=FCEF=x(6x)=﹣x2+3x(0<x<12);

y=x(12﹣x)=﹣(x﹣6)2+9,

當(dāng)x=6時,S有最大值為9

(3)①當(dāng)0≤t<3時,如圖1中,重疊部分是五邊形MFPQN,

S=S矩形EFPQ﹣SEMN=9t2=﹣t2+9

②當(dāng)3≤t≤6時,重疊部分是△PBN,

S=(6﹣t)2

綜上所述,S=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A,E,F(xiàn),C在一條直線上,若將△DEC的邊EC沿AC方向平移,平移過程中始終滿足下列條件:AE=CF,DE⊥AC于點E,BF⊥AC于點F,且AB=CD.則當(dāng)點E,F(xiàn)不重合時,BD與EF的關(guān)系是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)當(dāng)a≠0時,求的值.(寫出解答過程)

(2)若a≠0,b≠0,且+ =0,則的值為   

(3)若ab>0,則++的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.

(1)求∠DAB的度數(shù).

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點

(1)求證:ABM≌△DCM

(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;

(3)當(dāng)AD:AB= _時,四邊形MENF是正方形(只寫結(jié)論,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OA=OB,OC=OD,AD和BC相交于點E,則圖中共有全等三角形的對數(shù)(  )

A. 2對 B. 3對 C. 4對 D. 5對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,DBC的中點,AC的垂直平分線分別交AC、ADAB于點E、OF,則圖中全等的三角形的對數(shù)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】吉林省廣播電視塔(簡稱“吉塔”)是我省目前最高的人工建筑,也是俯瞰長春市美景的最佳去處.某科技興趣小組利用無人機搭載測量儀器測量“吉塔”的高度.已知如圖將無人機置于距離“吉塔”水平距離138米的點C處,則從無人機上觀測塔尖的仰角恰為30°,觀測塔基座中心點的俯角恰為45°.求“吉塔”的高度.(注: ≈1.73,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD,BE是兩條中線,則SEDC:SABC=( )

A.1:2
B.1:4
C.1:3
D.2:3

查看答案和解析>>

同步練習(xí)冊答案