(2013•南通一模)已知△ABC和△ADE均為等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)D為BC邊上一點(diǎn).
(1)求證:△ACE≌△ABD;
(2)若AC=2
2
,CD=1,求ED的長(zhǎng).
分析:(1)利用△ABC和△ADE均為等腰直角三角形,得到兩條對(duì)應(yīng)邊相等,然后得到其夾角相等即可證得兩三角形全等;
(2)解:在△ABC中求得BC=2、BD=BC-CD=4-1=3,再根據(jù)△ACE≌△ABD得到∠ACE=∠B=45°,最后得到∠ECD=∠ACE+∠ACB=90°,利用勾股定理求得ED長(zhǎng)即可
解答:(1)證明:
∵△ABC是等腰直角三角形
∴AB=AC,∠BAC=90°
同理AB=AE,∠CAE=90°
∵∠BAC=∠CAE=90°
∴∠EAC+∠CAD=∠BAD+∠CAD=90°
∴∠EAC=∠DAB
在△ACE與△ABD中,
AE=AD
∠EAC=∠DAB
AC=AB

∴△ACE≌△ABD(SAS)
(2)解:在△ABC中
BC=
AC
sinB
=
2
2
sin45°
=4

∴BD=BC-CD=4-1=3
∵△ABC是等腰直角三角形
∴∠ACB=∠B=45°
∵△ACE≌△ABD
∴∠ACE=∠B=45°,EC=DB=3
∵∠ECD=∠ACE+∠ACB=90°
∴△ECD是直角三角形
∴ED=
EC2+CD2
=
10
點(diǎn)評(píng):本題考查了全等三角形的判定與性質(zhì)及勾股定理等知識(shí),全等三角形是一種非常重要的工具,應(yīng)該利用好.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)下列計(jì)算正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)體育課上訓(xùn)練毽球,小明記錄了自己6次練習(xí)的成績(jī),數(shù)據(jù)如下:13、11、13、10、13、12,則這組數(shù)據(jù)的眾數(shù)是
13
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知:如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥AC于點(diǎn)D,過(guò)點(diǎn)C作⊙O的切線,交OD的延長(zhǎng)線與點(diǎn)E,連接AE.
(1)求證:AE與⊙O相切;
(2)連接BD并延長(zhǎng)交AE于點(diǎn)F,若EC∥AB,OA=6,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)某花木公司在20天內(nèi)銷售一批馬蹄蓮.其中,該公司的鮮花批發(fā)部日銷售量y1(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天)部分對(duì)應(yīng)值如下表所示.
時(shí)間x(天) 0 4 8 12 16 20
銷量y1(萬(wàn)朵) 0 16 24 24 16 0
另一部分鮮花在淘寶網(wǎng)銷售,網(wǎng)上銷售日銷售量y2(萬(wàn)朵)與時(shí)間x(x為整數(shù),單位:天) 關(guān)系如圖所示.
(1)請(qǐng)你從所學(xué)過(guò)的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與x的變化規(guī)律,寫出y1與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)觀察馬蹄蓮網(wǎng)上銷售量y2與時(shí)間x的變化規(guī)律,請(qǐng)你設(shè)想商家采用了何種銷售策略使得銷售量發(fā)生了變化,并寫出銷售量y2與x的函數(shù)關(guān)系式及自變量x的取值范圍;
(3)設(shè)該花木公司日銷售總量為y萬(wàn)朵,寫出y與時(shí)間x的函數(shù)關(guān)系式,并判斷第幾天日銷售總量y最大,并求出此時(shí)最大值.
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•南通一模)已知:如圖,直y=2x+b交x軸于點(diǎn)B,交y軸于點(diǎn)C,點(diǎn)A為x軸正半軸上一點(diǎn),AO=CO,△ABC的面積為12.
(1)求b的值;
(2)若點(diǎn)P是線段AB中垂線上的點(diǎn),是否存在這樣的點(diǎn)P,使△PBC成為直角三角形?若存在,試直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由;
(3)點(diǎn)Q為線段AB上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q與點(diǎn)A、B不重合),QE∥AC,交BC于點(diǎn)E,以QE為邊,在點(diǎn)B的異側(cè)作正方形QEFG.設(shè)AQ=m,△ABC與正方形QEFG的重疊部分的面積為S,試求S與m之間的函數(shù)關(guān)系式,并寫出m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹