【題目】某租賃公司擁有汽車(chē)100輛.據(jù)統(tǒng)計(jì),當(dāng)每輛車(chē)的月租金為3000元時(shí),可全部租出.每輛車(chē)的月租金每增加50元時(shí),未租出的車(chē)將會(huì)增加1輛.租出的車(chē)每輛每月需要維護(hù)費(fèi)150元,未租出的車(chē)每輛每月需要維護(hù)費(fèi)50元.
(1)當(dāng)每輛車(chē)的月租金定為3600元時(shí),能租出多少輛車(chē)?
(2)當(dāng)每輛車(chē)的租金定為多少元時(shí),租賃公司的月收益(租金收入扣除維護(hù)費(fèi))可達(dá)到306600元?
【答案】
(1)解:根據(jù)題意得:100﹣ =88(輛),
則當(dāng)每輛車(chē)的月租金定為3600元時(shí),能租出88輛車(chē)
(2)解:設(shè)每輛車(chē)的月租金為(3000+x)元,
根據(jù)題意得:(100﹣ )[(3000+x)﹣150]﹣ ×50=306600,
解得:x1=900,x2=1200,
∴3000+900=3900(元),3000+1200=4200(元),
則當(dāng)每輛車(chē)的月租金為3900元或4200元時(shí),月收益達(dá)到306600元
【解析】(1)根據(jù)題意列出算式,計(jì)算即可得到結(jié)果;(2)設(shè)每輛車(chē)的月租金為(3000+x)元,根據(jù)題意列出方程,求出方程的解即可得到結(jié)果.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一組數(shù)據(jù)8,3,8,6,7,8,7的眾數(shù)和中位數(shù)分別是( )
A.8,6
B.7,6
C.7,8
D.8,7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線(xiàn)m:y=2x+2是直線(xiàn)n向右平移2個(gè)單位再向下平移5個(gè)單位得到的,而(2a,7)在直線(xiàn)n上,則a=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)AB、CD相交于點(diǎn)O,OE平分∠BOC,∠BOC=70°,OF是OE的反向延長(zhǎng)線(xiàn).
(1)求∠DOF與∠BOF的度數(shù);
(2)OF平分∠AOD嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子有6個(gè)完全一樣的球,分別寫(xiě)著數(shù)字1、2、3、4、5、6,從中摸出一個(gè)記下球上的數(shù)字,然后放進(jìn)去,在摸一個(gè)球,則兩次摸出球上的數(shù)字之和為5的概率為__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年10月24日上午九時(shí),被譽(yù)為交通工程界的“珠穆朗瑪峰”的港珠澳大橋正式通車(chē),這座橋總長(zhǎng)約55000m,用科學(xué)記數(shù)法表示這座橋總長(zhǎng)為________m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為建設(shè)秀美龍江,某學(xué)校組織師生參加一年一度的植樹(shù)綠化工作,準(zhǔn)備租用7輛客車(chē),現(xiàn)有甲、乙兩種客車(chē),它們的載客量和租金如下表,設(shè)租用甲種客車(chē)x輛,租車(chē)總費(fèi)用為y元,
甲種客車(chē) | 乙種客車(chē) | |
載客量/(人/輛) | 60 | 40 |
租金/(元/輛) | 360 | 300 |
(1)求出y(單位:元)與x(單位:輛)之間的函數(shù)關(guān)系式。
(2)若該校共有350名師生前往參加勞動(dòng),共有多少種租車(chē)方案?
(3)帶隊(duì)老師從學(xué)校預(yù)支租車(chē)費(fèi)用2400元,試問(wèn)預(yù)支的租車(chē)費(fèi)用是否可有結(jié)余?若有結(jié)余,最多可結(jié)余多少元。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線(xiàn)y=﹣x+b與坐標(biāo)軸交于C,D兩點(diǎn),直線(xiàn)AB與坐標(biāo)軸交于A,B兩點(diǎn),線(xiàn)段OA,OC的長(zhǎng)是方程x2﹣3x+2=0的兩個(gè)根(OA>OC).
(1)求點(diǎn)A,C的坐標(biāo);
(2)直線(xiàn)AB與直線(xiàn)CD交于點(diǎn)E,若點(diǎn)E是線(xiàn)段AB的中點(diǎn),反比例函數(shù)y=(k≠0)的圖象的一個(gè)分支經(jīng)過(guò)點(diǎn)E,求k的值;
(3)在(2)的條件下,點(diǎn)M在直線(xiàn)CD上,坐標(biāo)平面內(nèi)是否存在點(diǎn)N,使以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的邊BC與x軸重合,連接對(duì)角線(xiàn)BD交y軸于點(diǎn)E,過(guò)點(diǎn)A作AG⊥BD于點(diǎn)G,直線(xiàn)GF交AD于點(diǎn)F,AB、OC的長(zhǎng)分別是一元二次方程x-5x+6=0的兩根(AB>OC),且tan∠ADB=.
(1)求點(diǎn)E、點(diǎn)G的坐標(biāo);
(2)直線(xiàn)GF分△AGD為△AGF與△DGF兩個(gè)三角形,且S△AGF:S△DGF =3:1,求直線(xiàn)GF的解析式;
(3)點(diǎn)P在y軸上,在坐標(biāo)平面內(nèi)是否存在一點(diǎn)Q,使以點(diǎn)B、D、P、Q為頂點(diǎn)的四邊形是矩形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com