【題目】如圖,甲、乙、丙、丁四位同學(xué)給出了四種表示該長方形面積的多項(xiàng)式: ①(2a+b)(m+n); ②2a(m+n)+b(m+n);
③m(2a+b)+n(2a+b);、2am+2an+bm+bn,你認(rèn)為其中正確的有( )
A.①②
B.③④
C.①②③
D.①②③④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、C分別為坐標(biāo)軸上上的三個點(diǎn),且OA=1,OB=3,OC=4.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)在平面直角坐標(biāo)系xOy中是否存在一點(diǎn)P,使得以以點(diǎn)A、B、C、P為頂點(diǎn)的四邊形為菱形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)若點(diǎn)M為該拋物線上一動點(diǎn),在(2)的條件下,請求出當(dāng)|PM﹣AM|的最大值時點(diǎn)M的坐標(biāo),并直接寫出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與直線AB相交于A(﹣3,0),B(0,3)兩點(diǎn).
(1)求這條拋物線的解析式;
(2)設(shè)C是拋物線對稱軸上的一動點(diǎn),求使∠CBA=90°的點(diǎn)C的坐標(biāo);
(3)探究在拋物線上是否存在點(diǎn)P,使得△APB的面積等于3?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):2,1,x,7,3,5,3,2的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是( )
A. 2 B. 2.5 C. 3 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)x=2時,代數(shù)式ax3+bx+1的值為6,那么當(dāng)x=-2時,這個代數(shù)式的值是( )
A. 1 B. -4 C. 6 D. -5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與坐標(biāo)軸分別交于點(diǎn)A(0,8)、B(8,0)和點(diǎn)E,動點(diǎn)C從原點(diǎn)O開始沿OA方向以每秒1個單位長度移動,動點(diǎn)D從點(diǎn)B開始沿BO方向以每秒1個單位長度移動,動點(diǎn)C、D同時出發(fā),當(dāng)動點(diǎn)D到達(dá)原點(diǎn)O時,點(diǎn)C、D停止運(yùn)動.
(1)直接寫出拋物線的解析式: ;
(2)求△CED的面積S與D點(diǎn)運(yùn)動時間t的函數(shù)解析式;當(dāng)t為何值時,△CED的面積最大?最大面積是多少?
(3)當(dāng)△CED的面積最大時,在拋物線上是否存在點(diǎn)P(點(diǎn)E除外),使△PCD的面積等于△CED的最大面積?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)在第一象限的圖象如圖所示,過點(diǎn)A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點(diǎn)M,△AOM的面積為3.
(1)求反比例函數(shù)的解析式;
(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個頂點(diǎn)在反比例函數(shù)的圖象上,求t的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com