【題目】解方程組:
(1)(代入法);
(2)(加減法);
(3);
(4) .
【答案】(1) ;(2) ;(3);(4) .
【解析】
(1)方程組利用代入消元法求出解即可;
(2)方程組利用加減消元法求出解即可;
(3)方程組利用加減消元法求出解即可;
(4)方程組整理后,利用加減消元法求出解即可.
(1),
將①代入②得:3x+4x-6=8,即x=2,
將x=2代入①得:y=1,
則方程組的解為;
(2),
①×2+②得:7x=14,即x=2,
將x=2代入①得:y=-2,
則方程組的解為;
(3),
①×2+②×5得:26x=39,即x=,
將x=代入②得:y=-,
則方程組的解為;
(4)方程組化簡,得,
把②代入①,得
14y-28=0,
解得y=2,
把y=2代入②,得x=2,
方程組的解為.
科目:初中數(shù)學 來源: 題型:
【題目】(1)敘述并證明三角形內(nèi)角和定理(證明用圖 1);
(2)如圖 2 是七角星形,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(c2012防城港)某奶品生產(chǎn)企業(yè),2010年對鐵鋅牛奶、酸牛奶、純牛奶三個品種的生產(chǎn)情況進行了統(tǒng)計,繪制了圖1、2的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
(1)酸牛奶生產(chǎn)了多少萬噸?把圖1補充完整;酸牛奶在圖2所對應(yīng)的圓心角是多少度?
(2)由于市場不斷需求,據(jù)統(tǒng)計,2011年的生產(chǎn)量比2010年增長20%,按照這樣的增長速度,請你估算2012年酸牛奶的生產(chǎn)量是多少萬噸?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△EFG≌△NMH, ∠F與∠M是對應(yīng)角.
(1)寫出相等的線段與相等的角;
(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點 O 是直線 AB上一點,∠COD 是直角,OE平分∠BOC.
(1)①如圖1,若∠DOE=25°,求∠AOC 的度數(shù);
②如圖2,若∠DOE=α,直接寫出∠AOC的度數(shù)(用含α的式子表示);
(2)將圖 1中的∠COD 繞點O按順時針方向旋轉(zhuǎn)至圖 2 所示位置.探究∠DOE 與∠AOC 的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點A的坐標為(﹣2,﹣1),點B的坐標為(0,﹣2),若將線段AB平移至A′B′的位置,點A′的坐標為(a,2),點B′的坐標為(1,b),則a+b的值為( 。
A. 0 B. 2 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=4,BC=12,點E是BC的中點.點P、Q分別是邊AD、BC上的兩點,其中點P以每秒個1單位長度的速度從點A運動到點D后再返回點A,同時點Q以每秒2個單位長度的速度從點C出發(fā)向點B運動.當其中一點到達終點時停止運動.當運動時間t為_____秒時,以點A、P,Q,E為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知代數(shù)式(mx2+2mx-1)(xm+3nx+2)化簡以后是一個四次多項式,并且不含二次項,請分別求出m,n的值,并求出一次項系數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com