【題目】已知:在△ABC和△DCE中,∠ACB=∠DCE=90°,AC=DC,BC=EC,AB與DE相交于點(diǎn)F.
(1)如圖1,求證AB=DE;
(2)如圖2,連接CF,求證∠AFC=∠EFC;
(3)如圖3,在(2)的條件下,當(dāng)AF=EF時(shí),連接BD,AE,延長(zhǎng)CF交BD于點(diǎn)G,AE交CF于點(diǎn)H,若AE=8,BG=2,求線(xiàn)段GH的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)2.
【解析】
(1)證明△ABC≌△DEC(SAS),可得結(jié)論;
(2)如圖2,作垂線(xiàn)段CM和CN,證明△ACM≌△DCN(AAS),得CM=CN,根據(jù)角平分線(xiàn)的逆定理可得:∠AFC=∠EFC;
(3)如圖3,先證明△AFC≌△EFC,得AC=EC=BC,再證明△ACH≌△CBG(AAS),得CG和CH的長(zhǎng),利用線(xiàn)段的差可得結(jié)論.
證明:(1)如圖1,在△ABC和△DEC中,
∵,
∴△ABC≌△DEC(SAS),
∴AB=DE;
(2)如圖2,過(guò)點(diǎn)C作CM⊥AB,CN⊥DE,垂足分別為M,N,
∵△ABC≌△DEC,
∴∠A=∠D,
在△ACM和△DCN中,
∵,
∴△ACM≌△DCN(AAS),
∴CM=CN,
∴∠AFC=∠EFC;
(3)如圖3,∵AB=DE,AF=EF,
∴AB-AF=DE-EF,即BF=DF,
∵∠AFC=∠EFC,∠AFC=∠BFG,∠EFC=∠DFG,
∴∠BFG=∠DFG,
∴FG⊥BD
∴∠BGF=∠DGF=90°,
同理∠AHF=∠EHF=90°,AH=EH=AE=4,
在△AFC和△EFC中
∵
∴△AFC≌△EFC,
∴AC=EC,
∴AC=BC,
∵∠CBG+∠BCG=90°,∠ACH+∠BCG=90°,
∴∠CBG=∠ACH,
在△ACH和△CBG中,
∵,
∴△ACH≌△CBG(AAS),
∴CH=BG=2,CG=AH=4,
∴GH=CG-CH=4-2=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y1=a1(x﹣m)2+5,點(diǎn)(m,25)在拋物線(xiàn)y2=a2x2+b2x+c2上,其中m>0.
(1)若a1=﹣1,點(diǎn)(1,4)在拋物線(xiàn)y1=a1(x﹣m)2+5上,求m的值;
(2)記O為坐標(biāo)原點(diǎn),拋物線(xiàn)y2=a2x2+b2x+c2的頂點(diǎn)為M,若c2=0,點(diǎn)A(2,0)在此拋物線(xiàn)上,∠OMA=90°,求點(diǎn)M的坐標(biāo);
(3)若y1+y2=x2+16x+13,且4a2c2﹣b22=﹣8a2,求拋物線(xiàn)y2=a2x2+b2x+c2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:
如圖1,在平面直角坐標(biāo)系xOy中,直線(xiàn)y1=ax+b與雙曲線(xiàn)y2= 交于A(1,3)和B(﹣3,﹣1)兩點(diǎn).
觀察圖象可知:
①當(dāng)x=﹣3或1時(shí),y1=y2;
②當(dāng)﹣3<x<0或x>1時(shí),y1>y2,即通過(guò)觀察函數(shù)的圖象,可以得到不等式ax+b>的解集.
有這樣一個(gè)問(wèn)題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學(xué)根據(jù)學(xué)習(xí)以上知識(shí)的經(jīng)驗(yàn),對(duì)求不等式x3+4x2﹣x﹣4>0的解集進(jìn)行了探究.
下面是他的探究過(guò)程,請(qǐng)將(2)、(3)、(4)補(bǔ)充完整:
(1)將不等式按條件進(jìn)行轉(zhuǎn)化:
當(dāng)x=0時(shí),原不等式不成立;
當(dāng)x>0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1>;
當(dāng)x<0時(shí),原不等式可以轉(zhuǎn)化為x2+4x﹣1<;
(2)構(gòu)造函數(shù),畫(huà)出圖象
設(shè)y3=x2+4x﹣1,y4=,在同一坐標(biāo)系中分別畫(huà)出這兩個(gè)函數(shù)的圖象.
雙曲線(xiàn)y4=如圖2所示,請(qǐng)?jiān)诖俗鴺?biāo)系中畫(huà)出拋物線(xiàn)y3=x2+4x﹣1;(不用列表)
(3)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo)
觀察所畫(huà)兩個(gè)函數(shù)的圖象,猜想并通過(guò)代入函數(shù)解析式驗(yàn)證可知:滿(mǎn)足y3=y4的所有x的值為 ;
(4)借助圖象,寫(xiě)出解集
結(jié)合(1)的討論結(jié)果,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“蓮城讀書(shū)月”活動(dòng)結(jié)束后,對(duì)八年級(jí)(三)班45人所閱讀書(shū)籍?dāng)?shù)量情況的統(tǒng)計(jì)結(jié)果如下表所示:
閱讀數(shù)量 | 1本 | 2本 | 3本 | 3本以上 |
人數(shù)(人) | 10 | 18 | 13 | 4 |
根據(jù)統(tǒng)計(jì)結(jié)果,閱讀2本書(shū)籍的人數(shù)最多,這個(gè)數(shù)據(jù)2是( )
A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[-2.5]=-3,用<a>表示大于a的最小整數(shù).例如:<2.5>=3,<4>=5,<-1.5>=-1.解決下列問(wèn)題:
(1)[-2.6]=______,<6.2>=______.
(2)已知x,y滿(mǎn)足方程組,則[x]=______,<y>=______,x的取值范圍是______,y的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 (1)①如圖1,已知AB∥CD,∠ABC=60°,可得∠BCD=_______°;
②如圖2,在①的條件下,如果CM平分∠BCD,則∠BCM=_________°;
③如圖3,在①、②的條件下,如果CN⊥CM,則∠BCN=___________°.
(2)、嘗試解決下面問(wèn)題:已知如圖4,AB∥CD,∠B=40°,CN是∠BCE的平分線(xiàn), CN⊥CM,求∠BCM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A∶P′C=1∶3,則P′A∶PB=( )
A. 1∶ B. 1∶2 C. ∶2 D. 1∶
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了改善辦學(xué)條件,計(jì)劃購(gòu)置一批電子白板和一批筆記本電腦,經(jīng)投標(biāo),購(gòu)買(mǎi)1塊電子白板比買(mǎi)3臺(tái)筆記本電腦多3000元,購(gòu)買(mǎi)4塊電子白板和5臺(tái)筆記本電腦共需80000元.
(1)求購(gòu)買(mǎi)1塊電子白板和一臺(tái)筆記本電腦各需多少元?
(2)根據(jù)該校實(shí)際情況,需購(gòu)買(mǎi)電子白板和筆記本電腦的總數(shù)為396,要求購(gòu)買(mǎi)的總費(fèi)用不超過(guò)2700000元,并購(gòu)買(mǎi)筆記本電腦的臺(tái)數(shù)不超過(guò)購(gòu)買(mǎi)電子白板數(shù)量的3倍,該校有哪幾種購(gòu)買(mǎi)方案?
(3)上面的哪種購(gòu)買(mǎi)方案最省錢(qián)?按最省錢(qián)方案購(gòu)買(mǎi)需要多少錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,∠BAD=∠BCD=90°,連接AC.若AC=8,則四邊形ABCD的面積為( 。
A.32B.24C.40D.36
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com