【題目】如圖,在△ABC中,DA⊥AB,AD=AB,EA⊥AC,AE=AC.
(1)試說明△ACD≌△AEB;
(2)若∠ACB=90°,連接CE,
①說明EC平分∠ACB;
②判斷DC與EB的位置關(guān)系,請說明理由.
【答案】(1)詳見解析;(2)詳見解析;
【解析】
(1)利用垂直證明∠DAC=∠EAB,即可證明全等;
(2)①根據(jù)AE=AC,∠ACB=90°,可得∠ACE=∠BCE=45°;
②延長DC交EB于F,先求出∠D=∠ABE,得到∠D+∠BAE+∠AEB=180°,再根據(jù)∠D+∠BAD+∠AEB+∠BAE+∠F=360°,求出∠F即可.
(1)∵DA⊥AB,EA⊥AC
∴∠DAB=∠CAE=90°
∴∠DAC+∠CAB=∠BAE+∠CAB
∴∠DAC=∠EAB
∵AD=AB,AE=AC
∴△ACD≌△AEB;
(2)①連接CE,∵DC⊥EB
∵EA⊥AC,AE=AC
∴∠ACE=∠CEA=45°
∵∠ACB=90°
∴∠BCE=45°=∠ACE
∴EC平分∠ACB
②延長DC交EB于F,
∵△ACD≌△AEB
∴∠D=∠ABE
∵∠ABE+∠BAE+∠AEB=180°
∴∠D+∠BAE+∠AEB=180°
∵∠D+∠BAD+∠AEB+∠BAE+∠F=360°
∴∠D+∠BAE+∠AEB+∠BAD+∠F=360°
∴180°+90°+∠F=360°
∴∠F=90°
∴DC⊥EB
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,FH是⊙O的切線,切點(diǎn)為F,FH∥BC,連接AF交BC于E,∠ABC的平分線BD交AF于D,連接BF.
(1)證明:AF平分∠BAC;
(2)證明:BF=FD;
(3)若EF=4,DE=3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.
⑴求證:ΔABF≌ΔEDF;
⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)均勻的轉(zhuǎn)盤被平均分成9等份,分別標(biāo)有1,2,3,4,5,6,7,8,9這9個(gè)數(shù)字.轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字.
小亮和小芳兩人玩轉(zhuǎn)盤游戲,對游戲規(guī)則,小芳提議:若轉(zhuǎn)岀的數(shù)字是3的倍數(shù),小芳獲勝,若轉(zhuǎn)出的數(shù)字是4的倍數(shù),小亮獲勝.
(1)你認(rèn)為小芳的提議合理嗎?為什么?
(2)利用這個(gè)轉(zhuǎn)盤,請你為他倆設(shè)計(jì)一種對兩人都公平的游戲規(guī)則.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由正比例函數(shù)沿軸的正方向平移4個(gè)單位而成的一次函數(shù)
的圖像與反比例函數(shù)()在第一象限的圖像交于A(1,n)和B兩點(diǎn).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公交車每天的支出費(fèi)用為60 元,每天的乘車人數(shù) x(人)與每天利潤(利潤 =票款收入 -支出費(fèi)用)y(元)的變化關(guān)系如下表所示(每位乘客的乘車票價(jià)固定不變):
x(人) | … | 200 | 250 | 300 | 350 | 400 | … |
y(元) | … | -20 | -10 | 0 | 10 | 20 | … |
根據(jù)表格中的數(shù)據(jù),回答下列問題:
(1)在這個(gè)變化關(guān)系中,自變量是什么?因變量是什么?
(2)若要不虧本,該公交車每天乘客人數(shù)至少達(dá)到多少?
(3)請你判斷一天乘客人數(shù)為 5 00人時(shí),利潤是多少?
(4) 試寫出該公交車每天利潤 y(元)與每天乘車人數(shù)x (人)的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)對體育活動(dòng)的喜愛情況,某校設(shè)計(jì)了“你最喜歡的體育活動(dòng)是哪一項(xiàng)(僅限一項(xiàng))”的調(diào)查問卷該校對本校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,以下是根據(jù)調(diào)查數(shù)據(jù)得到的統(tǒng)計(jì)圖的部分。
抽樣調(diào)查學(xué)生最喜歡的體育活動(dòng)人數(shù)的直方圖 抽樣調(diào)查學(xué)生最喜歡的體育活動(dòng)人數(shù)扇形統(tǒng)計(jì)圖.
請根據(jù)以上信息解答以下問題:
(1)該校對多少名學(xué)生進(jìn)行了抽樣調(diào)查?
(2)①請補(bǔ)全圖1并標(biāo)上數(shù)據(jù),②圖2中=________;
(3)若該校共有學(xué)生800人,請你估計(jì)該校最喜羽毛球項(xiàng)目的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行“漢字聽寫”比賽,每位學(xué)生聽寫漢字個(gè),比賽結(jié)束后隨機(jī)抽查部分學(xué)生的聽寫結(jié)果,以下是根據(jù)抽查結(jié)果繪制的統(tǒng)計(jì)圖的一部分.
組別 | 正確字?jǐn)?shù) | 人數(shù) |
根據(jù)以上信息解決下列問題:
(1)在統(tǒng)計(jì)表中,__________,__________,并補(bǔ)全直方圖;
(2)扇形統(tǒng)計(jì)圖中“組”所對應(yīng)的圓心角的度數(shù)是__________度;
(3)若該校共有名學(xué)生,如果聽寫正確的個(gè)數(shù)少于個(gè)定為不合格,請你估計(jì)這所學(xué)校本次比賽聽寫不合格的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小亮遇到這樣問題:如圖1,已知AB∥CD,EOF是直線AB、CD間的一條折線.判斷∠O、∠BEO、∠DFO三個(gè)角之間的數(shù)量關(guān)系.小亮通過思考發(fā)現(xiàn):過點(diǎn)O作OP∥AB,通過構(gòu)造內(nèi)錯(cuò)角,可使問題得到解決.
請回答:∠O、∠BEO、∠DFO三個(gè)角之間的數(shù)量關(guān)系是 .
參考小亮思考問題的方法,解決問題:
(2)如圖2,將△ABC沿BA方向平移到△DEF(B、D、E共線),∠B=50°,AC與DF相交于點(diǎn)G,GP、EP分別平分∠CGF、∠DEF相交于點(diǎn)P,求∠P的度數(shù);
(3)如圖3,直線m∥n,點(diǎn)B、F在直線m上,點(diǎn)E、C在直線n上,連接FE并延長至點(diǎn)A,連接BA、BC和CA,做∠CBF和∠CEF的平分線交于點(diǎn)M,若∠ADC=α,則∠M= (直接用含α的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com