1.如圖,AC和BC相交于點O,OA=OC,OB=OD.求證:AB∥DC.

分析 根據(jù)邊角邊定理求證△ODC≌△OBA,可得∠C=∠A(或者∠D=∠B),即可證明DC∥AB.

解答 證明:在△ODC和△OBA中,
$\left\{\begin{array}{l}{OB=OD}\\{∠DOC=∠BOA}\\{OC=OA}\end{array}\right.$,
∴△ODC≌△OBA(SAS),
∴∠C=∠A(或者∠D=∠B)(全等三角形對應角相等),
∴AB∥DC(內錯角相等,兩直線平行).

點評 此題主要考查學生對全等三角形的判定與性質和平行線的判定的理解和掌握,解答此題的關鍵是利用邊角邊定理求證△ODC≌△OBA.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

11.如圖,∠AOB=90°,在∠AOB的內部有一條射線OC.
(1)畫射線OD⊥OC.
(2)寫出此時∠AOD與∠BOC的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.如果x=-2是方程a(x+3)=$\frac{1}{2}$a+x的解.求a2-$\frac{a}{2}$+1的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

9.如圖,梯形OABC中,BC∥AO,O(0,0),A(10,0),B(10,4),BC=2,G(t,0)是底邊OA上的動點.
(1)tan∠OAC=2.
(2)邊AB關于直線CG的對稱線段為MN,若MN與△OAC的其中一邊平行時,則t=4或4$\sqrt{5}$或10-2$\sqrt{5}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

16.如圖,點C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運動,點E與點D關于AC對稱,DF⊥DE于點D,并交EC的延長線于點F,則線段EF的長度( 。
A.線段EF的長度不變B.隨D點的運動而變化,最小值為4$\sqrt{3}$
C.隨D點的運動而變化,最小值為2$\sqrt{3}$D.隨D點的運動而變化,沒有最值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

6.八(3)班為了組隊參加學校舉行的“五水共治”知識競賽,在班里選取了若干名學生,分成人數(shù)相同的甲、乙兩組,對兩組學生進行四次“五水共治”模擬競賽,成績優(yōu)秀的人數(shù)和優(yōu)秀率分別繪制成如下統(tǒng)計圖.

根據(jù)統(tǒng)計圖,解答下列問題:
(1)請計算第三次模擬競賽成績的優(yōu)秀率是多少?并將條形統(tǒng)計圖與折線統(tǒng)計圖補充完整;
(2)已求得甲組四次成績優(yōu)秀的平均人數(shù)為7,甲組四次成績優(yōu)秀人數(shù)的方差為1.5,請通過計算乙組的相關數(shù)據(jù),判斷哪一組成績優(yōu)秀的人數(shù)較穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

13.計算:
(1)$\frac{\sqrt{2}}{2}$($\sqrt{12}$+6$\sqrt{\frac{1}{27}}$-$\sqrt{48}$);
(2)已知x-1=$\sqrt{3}$,求代數(shù)式(x+1)2-4(x+1)+4的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.2015年8月?lián)嶂菔汹M東大道改造工程全面開啟,經過某十字路口的汽車無法繼續(xù)直行,只可左轉或右轉,但電動車不受限制,現(xiàn)有一輛汽車和一輛電動車同時到達該路口:
(1)請用“樹狀圖”或“列表法”列舉出汽車和電動車行駛方向所有可能的結果;
(2)求汽車和電動車都向左轉的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.如圖,直線MN交⊙O于點A、B,AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于點E.
(1)DE與⊙O有何位置關系?說明理由;
(2)若DE=4cm,AE=2cm,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案