【題目】如圖,等腰△ABC底邊BC的長為4cm,面積為12cm,腰AB的垂直平分線交AB于點E,若點DBC邊的中點,M為線段EF上一動點,則△BDM的周長最小值為_________

【答案】8cm

【解析】

連接AD,由于△ABC是等腰三角形,點DBC邊的中點,故ADBC,再根據(jù)三角形的面積公式求出AD的長,再根據(jù)EF是線段AB的垂直平分線可知,點B關于直線EF的對稱點為點A,故AD的長為BMMD的最小值,由此即可得出結論.

解:如圖,連接AD,
∵△ABC是等腰三角形,點DBC邊的中點,
ADBC,
SABCBCAD×4×AD12,
解得:AD6cm
EF是線段AB的垂直平分線,
∴點B關于直線EF的對稱點為點A,
AD的長為BMMD的最小值,
∴△BDM的周長最短=(BMMD)+BDADBC6×4628cm
故答案為:8cm

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點D在AC上,CD=3厘米.點P、Q分別由A,C兩點同時出發(fā),點P沿AC方向向點C勻速移動,速度為每秒k厘米,行完AC全程用時8秒;點Q沿CB方向向點B勻速移動,速度為每秒1厘米.設運動的時間為x秒(0<x<8),△DCQ的面積為y1平方厘米,△PCQ的面積為y2平方厘米.

(1)求y1與x的函數(shù)關系,并在圖2中畫出y1的圖象;
(2)如圖2,y2的圖象是拋物線的一部分,其頂點坐標是(4,12),求點P的速度及AC的長;
(3)在圖2中,點G是x軸正半軸上一點0<OG<6,過G作EF垂直于x軸,分別交y1、y2的圖象于點E、F.
①說出線段EF的長在圖1中所表示的實際意義;
②當0<x<6時,求線段EF長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中,正確的是( )
A.不可能事件發(fā)生的概率為0
B.隨機事件發(fā)生的概率為
C.概率很小的事件不可能發(fā)生
D.投擲一枚質地均勻的硬幣100次,正面朝上的次數(shù)一定為50次

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AE、BF是角平分線,它們相交于點OAD是高,BAC=50°,C=70°,求DAE,AOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板按如圖①的位置擺放,將△DEF繞點A(F)逆時針旋轉60°后,得到如圖②,測得CG=6 ,則AC長是( )

A.6+2
B.9
C.10
D.6+6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知CD平分∠ACB,∠1=2

1)求證:DEAC

2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,則DH=( )

A.
B.
C.12
D.24

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,ACB90°ABCBAC的角平分線相交于點P,連接CP,過點PDECP分別交ACBC于點D、E

(1)BAC40°,求APBADP度數(shù);

(2)探究:通過(1)的計算,小明猜測APBADP,請你說明小明猜測的正確性(要求寫出過程).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于每個非零自然數(shù)n,拋物線y=x2 x+ 與x軸交于An、Bn兩點,以AnBn表示這兩點間的距離,則A1B1+A2B2+…+A2017B2017的值是

查看答案和解析>>

同步練習冊答案