【題目】在一個不透明的袋子中裝有僅顏色不同的10個小球,其中紅球4個,黑球6個.
(1)先從袋子中取出m(m>1)個紅球,再從袋子中隨機摸出1個球,若“摸出的球是黑球”為必然事件,求m的值;
(2)先從袋子中取出m個紅球,再放入m個一樣的黑球并搖勻,隨機摸出1個黑球的概率等于 ,求m的值.
科目:初中數學 來源: 題型:
【題目】某校為了提升初中學生學習數學的興趣,培養(yǎng)學生的創(chuàng)新精神,舉辦“玩轉數學”比賽.現有甲、乙兩個小組進入決賽,評委從研究報告、小組展示、答辯三個方面為各小組打分,各項成績均按百分制記錄.甲、乙兩個小組各項得分如下表:
小組 | 研究報告 | 小組展示 | 答辯 |
甲 | 91 | 80 | 78 |
乙 | 79 | 83 | 90 |
(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序;
(2)如果研究報告、小組展示、答辯按照4:3:3計算成績,哪個小組的成績最高?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,邊長為2的正方形OABC的頂點A、C分別在x軸、y軸的正半軸上,二次函數y=﹣ x2+bx+c的圖象經過B、C兩點.
(1)求該二次函數的解析式;
(2)結合函數的圖象探索:當y>0時x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】勾股定理a2+b2=c2本身就是一個關于a,b,c的方程,滿足這個方程的正整數解(a,b,c)通常叫做勾股數組.畢達哥拉斯學派提出了一個構造勾股數組的公式,根據該公式可以構造出如下勾股數組:(3,4,5),(5,12,13),(7,24,25),….分析上面勾股數組可以發(fā)現,4=1×(3+1),12=2×(5+1),24=3×(7+1),…分析上面規(guī)律,第5個勾股數組為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF= DC,連接EF并延長交BC的延長線于點G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過A(﹣1,0),B(5,0),C(0,- )三點.
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標;
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構成的四邊形為平行四邊形?若存在,求點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工程隊修建一條長1200m的道路,采用新的施工方式,工效提升了50%,結果提前4天完成任務.
(1)求這個工程隊原計劃每天修建道路多少米?
(2)在這項工程中,如果要求工程隊提前2天完成任務,那么實際平均每天修建道路的工效比原計劃增加百分之幾?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為聲援揚州“運河申遺”,某校舉辦了一次運河知識競賽,滿分10分,學生得分為整數,成績達到6分以上(包括6分)為合格,達到9分以上(包含9分)為優(yōu)秀.這次競賽中甲乙兩組學生成績分布的條形統(tǒng)計圖如圖所示.
(1)補充完成下面的成績統(tǒng)計分析表:
組別 | 平均分 | 中位數 | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | 6.7 | 3.41 | 90% | 20% | |
乙組 | 7.5 | 1.69 | 80% | 10% |
(2)小明同學說:“這次競賽我得了7分,在我們小組中排名屬中游略偏上!”觀察上表可知,小明是 組的學生;(填“甲”或“乙”)
(3)甲組同學說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學不同意甲組同學的說法,認為他們組的成績要好于甲組.請你給出兩條支持乙組同學觀點的理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com