如圖,⊙O是等邊三角形ABC的外接圓,D、E是⊙O上兩點,則∠D=    度,∠E=    度.
【答案】分析:根據(jù)圓周角定理和圓內(nèi)接四邊形的性質(zhì)解答.
解答:解:∵△ABC是等邊三角形,
∴∠BAC=∠ACB=60°,
由圓周角定理知,∠D=∠BAC=60°,
由圓內(nèi)接四邊形的對角互補知,∠E=180°-∠ACB=120°.
點評:本題利用了等邊三角形的性質(zhì),圓周角定理,圓內(nèi)接四邊形的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點E為AB的中點.△EMN是由電腦控制其形狀變化的三角通風(fēng)窗(陰影部分均不通風(fēng)),MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿.
(1)當MN和AB之間的距離為0.5米時,求此時△EMN的面積;
(2)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù);
(3)請你探究△EMN的面積S(平方米)有無最大值?若有,請求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,以△ABC的邊AB、AC為邊的等邊三角ABD和等邊三角形ACE,四邊形ADFE是平行四邊形.
(1)當∠BAC滿足什么條件時,四邊形ADFE是矩形;
(2)當∠BAC滿足什么條件時,平行四邊形ADFE不存在;
(3)當△ABC分別滿足什么條件時,平行四邊形ADFE是菱形,正方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•萊蕪)某倉庫為了保持庫內(nèi)的濕度和溫度,四周墻上均裝有如圖所示的自動通風(fēng)設(shè)施.該設(shè)施的下部ABCD是矩形,其中AB=2米,BC=1米;上部CDG是等邊三角形,固定點E為AB的中點.MN是可以沿設(shè)施邊框上下滑動且始終保持和AB平行的伸縮橫桿,△EMN是隨MN滑動而變化的三角通風(fēng)窗(陰影部分均不通風(fēng)).
(1)當MN和AB之間的距離為0.5米時,求此時△EMN的面積.
(2)設(shè)MN與AB之間的距離為x米,試將△EMN的面積S(平方米)表示成關(guān)于x的函數(shù).
(3)請你探究△EMN的面積S(平方米)有無最大值?若有,請求出這個最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以△ABC的邊AB、AC為邊的等邊三角ABD和等邊三角形ACE,四邊形ADFE是平行四邊形
(1)當∠BAC滿足什么條件時,平行四邊形ADFE是矩形?
(2)當∠BAC滿足什么條件時,平行四邊形ADFE不存在?
(3)當△ABC分別滿足什么條件時,平行四邊形ADFE是正方形?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

.如圖,在平面直角坐標系中,已知點A(0,2),點P是x軸上一動點,以線段AP為一邊,在其一側(cè)作等邊三角線APQ。當點P運動到原點O處時,記Q得位置為B。
(1)求點B的坐標;
(2)求證:當點P在x軸上運動(P不與Q重合)時,∠ABQ為定值;
(3)是否存在點P,使得以A、O、Q、B為頂點的四邊形是梯形?若存在,請求出P點的坐標;若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案