【題目】如圖,已知∠1=∠3,CD∥EF,試說明∠1=∠4.請將過程填寫完整.
解:∵∠1=∠3,
又∠2=∠3(_______),
∴∠1=____,
∴______∥______(_______),
又∵CD∥EF,
∴AB∥_____,
∴∠1=∠4(兩直線平行,同位角相等).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,DC=AE,AE是BC邊上的中線,過點C作CF⊥AE,垂足為點F,過點B作BD⊥BC交CF的延長線于點D.
(1)求證:AC=CB; (2)若AC=12 cm,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已等腰Rt△ABC中,∠BAC=90°.點D從點B出發(fā)沿射線BC移動,以AD為腰作等腰Rt△ADE,∠DAE=90°.連接CE.
(1)如圖,求證:△ACE≌△ABD;
(2)點D運動時,∠BCE的度數(shù)是否發(fā)生變化?若不變化,求它的度數(shù);若變化,說明理由;
(3)若AC=,當(dāng)CD=1時,請直接寫出DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級學(xué)生開展跳繩比賽活動,每班派5名學(xué)生參加,按團體總分多少排列名次,統(tǒng)計發(fā)現(xiàn)成績最好的甲班和乙班總分相等,下表是甲班和乙班學(xué)生的比賽數(shù)據(jù)單位:個
選手 | 1號 | 2號 | 3號 | 4號 | 5號 | 總計 |
甲班 | 100 | 98 | 105 | 94 | 103 | 500 |
乙班 | 99 | 100 | 95 | 109 | 97 | 500 |
此時有學(xué)生建議,可以通過考察數(shù)據(jù)中的其他信息作為參考,請解答下列問題:
求兩班比賽數(shù)據(jù)中的中位數(shù),以及方差;
請根據(jù)以上數(shù)據(jù),說明應(yīng)該定哪一個班為冠軍?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接EN、AM、CM,則AM+BM+CM的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于某一函數(shù)給出如下定義:若存在實數(shù)p,當(dāng)其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當(dāng)函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.
(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;
(2)函數(shù)y=2x2-bx. ①若其不變長度為零,求b的值;
②若1≤b≤3,求其不變長度q的取值范圍;
(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1 , 將G1沿x=m翻折后得到的函數(shù)圖象記為G2 , 函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,G是正方形形ABCD的邊BC上一點,DE、BF分別垂直AG于點E、F,則圖中與△ABF相似的三角形有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知第三象限的點P(x,y)滿足,.
(1)求點P的坐標(biāo);
(2)①點P到x軸的距離為_______;
②把點P向右平移m個單位后得到P1,則點P1到x軸的距離為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com