【題目】如圖,長(zhǎng)方形OABC的邊OA在數(shù)軸上,O為原點(diǎn),長(zhǎng)方形OABC的面積為15,OC邊長(zhǎng)為3.

(1)數(shù)軸上點(diǎn)A表示的數(shù)為

(2)將長(zhǎng)方形OABC沿?cái)?shù)軸水平方向移動(dòng),移動(dòng)后的長(zhǎng)方形記為O′A′B′C′(O、A、B、C對(duì)應(yīng)點(diǎn)分別為O′、A′、B′、C′),移動(dòng)后的長(zhǎng)方形O′A′B′C′與原長(zhǎng)方形OABC重疊部分的周長(zhǎng)記為L

①當(dāng)L=10時(shí),移動(dòng)的距離為 ;

②當(dāng)L恰好等于原長(zhǎng)方形OABC周長(zhǎng)的一半時(shí),數(shù)軸上點(diǎn)A表示的數(shù)為

③設(shè)點(diǎn)A的移動(dòng)距離AA′=x.若D為線段AA的中點(diǎn),點(diǎn)E在線段OO上,且OE=OO,當(dāng)點(diǎn)D,E所表示的數(shù)互為相反數(shù)時(shí),求x的值.

【答案】(1)5;(2)3;91;

【解析】

(1)利用面積÷OC可得AO長(zhǎng),從而得到點(diǎn)A表示的數(shù);
(2)①由10-2OC可得O′A的長(zhǎng)度,則OO′=OA-O′A;
首先計(jì)算出L的值,再根據(jù)矩形的周長(zhǎng)表示出O′A的長(zhǎng)度,再分兩種情況:當(dāng)向左運(yùn)動(dòng)時(shí),當(dāng)向右運(yùn)動(dòng)時(shí),分別求出A′表示的數(shù);

③分兩種情況討論,當(dāng)若向右移動(dòng),則點(diǎn)D、E表示的數(shù)均為正數(shù),不可能互為相反數(shù);當(dāng)向左移動(dòng),求得點(diǎn)D、E所表示的數(shù),再根據(jù)互為相反數(shù)列出方程,解方程即可.

解:(1)15=5;

(2)①如圖所示:O′A=(L-2OC)=2,所以OO′=5-2=3,即為移動(dòng)距離;

②L=,則O′A=1,

當(dāng)向右移動(dòng)時(shí),OA′=5-1+5=9,即A表示的數(shù)為9,

當(dāng)向左移動(dòng)時(shí),OA′=1,則A表示的數(shù)為1.

③若向右移動(dòng),則點(diǎn)D、E表示的數(shù)均為正數(shù),不可能互為相反數(shù),

若向左移動(dòng),則點(diǎn)D表示的數(shù)為,點(diǎn)E表示的數(shù)為,

由題意得:,

解得:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=+bx+c圖象經(jīng)過A10),B4,0)兩點(diǎn).

1)求拋物線的解析式;

2)若Cm,m﹣1)是拋物線上位于第一象限內(nèi)的點(diǎn),D是線段AB上的一個(gè)動(dòng)點(diǎn)(不與A、B重合),過點(diǎn)D分別作DEBCACE,DFACBCF.

①求證:四邊形DECF是矩形;

②連結(jié)EF,線段EF的長(zhǎng)是否存在最小值?若存在,求出EF的最小值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017湖南省益陽(yáng)市)在平面直角坐標(biāo)系中,將一點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫這一點(diǎn)的“互換點(diǎn)”,如(﹣3,5)與(5,﹣3)是一對(duì)“互換點(diǎn)”.

1)任意一對(duì)“互換點(diǎn)”能否都在一個(gè)反比例函數(shù)的圖象上?為什么?

2MN是一對(duì)“互換點(diǎn)”,若點(diǎn)M的坐標(biāo)為(m,n),求直線MN的表達(dá)式(用含m、n的代數(shù)式表示);

3)在拋物線的圖象上有一對(duì)“互換點(diǎn)”A、B,其中點(diǎn)A在反比例函數(shù)的圖象上,直線AB經(jīng)過點(diǎn)P),求此拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(3分)觀察下列圖形規(guī)律:當(dāng)n= 時(shí),圖形“●”的個(gè)數(shù)和的個(gè)數(shù)相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在數(shù)軸上A點(diǎn)表示數(shù),B點(diǎn)表示數(shù),、滿足||+||=0;

(1)點(diǎn)A表示的數(shù)為_____;點(diǎn)B表示的數(shù)為_____;

(2)若在原點(diǎn)O處放一擋板,一小球甲從點(diǎn)A處以1個(gè)單位/秒的速度向左運(yùn)動(dòng);同時(shí)另一小球乙從點(diǎn)B處以2個(gè)單位/秒的速度也向左運(yùn)動(dòng),在碰到擋板后(忽略球的大小,可看作一點(diǎn))以原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒),

①當(dāng)t=1時(shí),甲小球到原點(diǎn)的距離=_____;乙小球到原點(diǎn)的距離=_____.

當(dāng)t=3時(shí),甲小球到原點(diǎn)的距離=_____;乙小球到原點(diǎn)的距離=_____.

②試探究:甲,乙兩小球到原點(diǎn)的距離可能相等嗎?若不能,請(qǐng)說明理由.若能,請(qǐng)直接寫出甲,乙兩小球到原點(diǎn)的距離相等時(shí)經(jīng)歷的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑CD垂直于不過圓心O的弦AB,垂足為點(diǎn)N,連接AC,點(diǎn)EAB上,且AE=CE,過點(diǎn)B作⊙O的切線交EC的延長(zhǎng)線于點(diǎn)P.

(1)求證:AC2=AEAB;

(2)試判斷PBPE是否相等,并說明理由;

(3)設(shè)⊙O的半徑為4,NOC的中點(diǎn),點(diǎn)Q在⊙O上,求線段PQ的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某客運(yùn)公司的特快巴士與普通巴士同時(shí)從甲地出發(fā),以各自的速度勻速向乙地行駛,普通巴士到達(dá)乙地后停止,特快巴士到達(dá)乙地停留45分鐘后,按原路以另一速度勻速返回甲地,已知兩輛巴士分別距乙地的路程y(千米)與行駛時(shí)間x(小時(shí))之間的函數(shù)圖象如圖所示.求普通巴士到達(dá)乙地時(shí),特快巴士與甲地之間的距離為_____千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠一個(gè)車間工人計(jì)劃一周平均每天生產(chǎn)零件300個(gè),實(shí)際每天生產(chǎn)量與計(jì)劃每天生產(chǎn)量相比有誤差.如表是這個(gè)車間工人在某一周每天的零件生產(chǎn)情況,超計(jì)劃生產(chǎn)量為正、不足計(jì)劃生產(chǎn)量為負(fù).(單位:個(gè))

時(shí)間

周一

周二

周三

周四

周五

周六

周日

誤差

+10

15

6

+12

10

+18

11

(1)生產(chǎn)零件數(shù)量最少的一天比最多的一天少生產(chǎn)______個(gè)零件;

(2)若生產(chǎn)一個(gè)零件可得利潤(rùn)5元,則這個(gè)車間的工人在這一周為工廠一共帶來了多少利潤(rùn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AB=3,BC=5,以點(diǎn)B的圓心,以任意長(zhǎng)為半徑作弧,分別交BA、BC于點(diǎn)P、Q,再分別以P、Q為圓心,以大于PQ的長(zhǎng)為半徑作弧,兩弧在∠ABC內(nèi)交于點(diǎn)M,連接BM并延長(zhǎng)交AD于點(diǎn)E,則DE的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案