作業(yè)寶已知:如圖,在△ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.
(1)求證:△ADC≌△ECD;
(2)當點D在什么位置時,四邊形ADCE是矩形,請說明理由.

(1)證明:∵AB=AC,
∴∠B=∠ACB,
又∵?ABDE中,AB=DE,AB∥DE,
∴∠B=∠EDC=∠ACB,AC=DE,
在△ADC和△ECD中,
,
∴△ADC≌△ECD(SAS).

(2)答:點D在BC的中點上時,四邊形ADCE是矩形,
解:∵四邊形ABDE是平行四邊形,
∴AE=BD,AE∥BC,
∵D為邊長中點,
∴BD=CD,
∴AE=CD,AE∥CD,
∴四邊形ADCE是平行四邊形,
∵△ADC≌△ECD,
∴AC=DE,
∴四邊形ADCE是矩形,
即點D在BC的中點上時,四邊形ADCE是矩形.
分析:(1)利用等邊對等角以及平行四邊形的性質(zhì)可以證得∠EDC=∠ACB,則易證△ADC≌△ECD,利用全等三角形的對應邊相等即可證得;
(2)根據(jù)平行四邊形性質(zhì)推出AE=BD=CD,AE∥CD,得出平行四邊形,根據(jù)AC=DE推出即可.
點評:本題考查了平行四邊形的性質(zhì)以及等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì),矩形的判定的應用,證明兩線段相等常用的方法就是轉(zhuǎn)化為證兩三角形全等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案