【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(3,0),C(1,﹣1),ACx軸于點(diǎn)P.

(1)ACB的度數(shù)為_____;

(2)P點(diǎn)坐標(biāo)為______

(3)以點(diǎn)O為位似中心,將△ABC放大為原來的2倍,請(qǐng)?jiān)趫D中畫出所有符合條件的三角形.

【答案】(1)45°;(2)(,0);(3)見解析.

【解析】

(1)由題意得到三角形ABC為等腰直角三角形,即可確定出所求角度數(shù);

(2)利用待定系數(shù)法求出直線AC解析式,即可確定出P坐標(biāo);

(3)以為位似中心,將ABC放大為原來的2倍,畫出相應(yīng)圖形,如圖所示.

(1)∵∠ABC=90°,AB=CB=,

∴△ABC為等腰直角三角形,

∴∠ACB=45°;

故答案為:45°;

(2)由題意得:A(2,2),C(1,﹣1),

設(shè)直線AC解析式為y=kx+b,

AC坐標(biāo)代入得: ,

解得:,即直線AC解析式為y=3x﹣4,

y=0,得到x=,

P的坐標(biāo)為(,0);

故答案為:(,0);

(3)如圖所示:A1B1C1A2B2C2為所求三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市城建公司新建了一個(gè)購(gòu)物中心,共有商鋪30間,據(jù)調(diào)查分析,當(dāng)每間的年租金為10萬元時(shí),可全部租出:若每間的年租金每增加0.5萬元,則少租出商鋪一間,為提供優(yōu)質(zhì)服務(wù),城建公司引入物業(yè)公司代為管理,租出的商鋪每間每年需向物業(yè)公司繳納物業(yè)費(fèi)1萬元,未租出的商鋪不需要向物業(yè)公司繳納物業(yè)費(fèi).

(1)當(dāng)每間商鋪的年租金定為13萬元時(shí),能租出   間.

(2)當(dāng)每問商鋪的年租金定為多少萬元時(shí),該公司的年收益為286萬元,且使租客獲得實(shí)惠?(收益=租金﹣物業(yè)費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,BAC=90°,分別以 AC BC 為邊向外作正方形 ACFG 和正方形 BCDE,過點(diǎn) D FC 的延長(zhǎng)線的垂線,垂足為點(diǎn) H

(1)求證:ABC≌△HDC

(2)連接 FD, AC 的延長(zhǎng)線于點(diǎn) M AG ,tanABCFCM 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,延長(zhǎng)于點(diǎn),延長(zhǎng)于點(diǎn),過點(diǎn),交的延長(zhǎng)線于點(diǎn),則=_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠B=60°,BC=6,EBC中點(diǎn),FAB上一點(diǎn),GAD上一點(diǎn),且BF=2,FEG=60°,EGAC于點(diǎn)H,下列結(jié)論①△BEF∽△CHE;AG=1;EH=;SBEF=3SAGH;正確的是______.(填序號(hào)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并按要求解答.

(模型介紹)

如圖①,C是線段A、B上一點(diǎn)E、FAB同側(cè),且∠A=B=ECF=90°,看上去像一個(gè)“K“,我們稱圖①為“K”型圖.

(性質(zhì)探究)

性質(zhì)1:如圖①,若EC=FC,ACE≌△BFC

性質(zhì)2:如圖①,若EC≠FC,ACE~BFC且相似比不為1.

(模型應(yīng)用)

應(yīng)用1:如圖②,在四邊形ABCD中,∠ADC=90°,AD=1,CD=2,BC=2,AB=5.求BD.

應(yīng)用2:如圖③,已知△ABC,分別以AB、AC為邊向外作正方形ABGF、正方形ACDE,AHBC,連接EF.交AH的反向延長(zhǎng)線于點(diǎn)K,證明:KEF中點(diǎn).

(1)請(qǐng)你完成性質(zhì)1的證明過程;

(2)請(qǐng)分別解答應(yīng)用1,應(yīng)用2提出的問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李航想利用太陽光測(cè)量樓高.他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:如示意圖,李航邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得李航落在墻上的影子高度CD=1.2m,CE=0.6m,CA=30m(點(diǎn)A、E、C在同一直線上).已知李航的身高EF1.6m,請(qǐng)你幫李航求出樓高AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線、軸分別交于、兩點(diǎn).點(diǎn)為線段的中點(diǎn).過點(diǎn)作直線軸于點(diǎn)

(1)直接寫出的坐標(biāo);

(2)如圖1,點(diǎn)是直線上的動(dòng)點(diǎn),連接、,線段在直線上運(yùn)動(dòng),記為,點(diǎn)軸上的動(dòng)點(diǎn),連接點(diǎn)、,當(dāng)取最大時(shí),求的最小值;

(3)如圖2,在軸正半軸取點(diǎn),使得,以為直角邊在軸右側(cè)作直角,且,作的角平分線,將沿射線方向平移,點(diǎn)、平移后的對(duì)應(yīng)點(diǎn)分別記作、、,當(dāng)的點(diǎn)恰好落在射線上時(shí),連接,,將繞點(diǎn)沿順時(shí)針方向旋轉(zhuǎn)后得,在直線上是否存在點(diǎn),使得為等腰三角形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校與圖書館在同一條筆直道路上,甲從學(xué)校去圖書館,乙從圖書館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)目的地.兩人之間的距離(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系如圖所示.其中說法正確的是(

A.甲的速度是60/分鐘B.乙的速度是80/分鐘

C.點(diǎn)的坐標(biāo)為D.線段所表示的函數(shù)表達(dá)式為

查看答案和解析>>

同步練習(xí)冊(cè)答案