【題目】在ABCD中,E、F分別在BC、AD上,若想要使四邊形AFCE為平行四邊形,需添加一個(gè)條件,這個(gè)條件不可以是( 。
A. AF=CE B. AE=CF C. ∠BAE=∠FCD D. ∠BEA=∠FCE
【答案】B
【解析】試題解析:A、錯(cuò)誤.∵四邊形ABCD是平行四邊形,
∴AF∥EC,
∵AF=EC,
∴四邊形AECF是平行四邊形.
∴選項(xiàng)A錯(cuò)誤.
B、正確.根據(jù)AE=CF,所以四邊形AECF可能是平行四邊形,有可能是等腰梯形,故選項(xiàng)B正確.
C、錯(cuò)誤.由∠BAE=∠FCD,∠B=∠D,AB=CD可以推出△ABE≌△CDF,
∴BE=DF,
∵AD=BC,
∴AF=EC,
∵AF∥EC,
∴四邊形AECF是平行四邊形.
故選項(xiàng)C錯(cuò)誤.
D、錯(cuò)誤.∵∠BEA=∠FCE,
∴AE∥CF,
∵AF∥EC,
∴四邊形AECF是平行四邊形.
故選項(xiàng)D錯(cuò)誤.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)O為直線(xiàn)AB上一點(diǎn),過(guò)點(diǎn)O作射線(xiàn)OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線(xiàn)OB上,另一邊ON在直線(xiàn)AB的下方.將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,另一邊ON仍在直線(xiàn)AB的下方.
(1)若OM恰好平分∠BOC,求∠BON的度數(shù);
(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度數(shù);
(3)若設(shè)∠BON=α(0°<α<90°),試用含α的代數(shù)式表示∠COM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若點(diǎn)(m,n)在函數(shù)y=2x+1的圖象上,則2m-n的值是( )
A. 2 B. -2 C. 8 D. -1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b是一個(gè)等腰三角形的兩邊長(zhǎng),且滿(mǎn)足a2+b2-4a-6b+13=0,求這個(gè)等腰三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC=80°.將求∠AGD的過(guò)程填寫(xiě)完整.
解:因?yàn)镋F∥AD,
所以∠2=().
又因?yàn)椤?=∠2,
所以∠1=∠3().
所以AB∥().
所以∠BAC+=180°().
因?yàn)椤螧AC=80°,
所以∠AGD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BF平行于正方形ABCD的對(duì)角線(xiàn)AC,點(diǎn)E在BF上,且AE=AC,CF∥AE,則∠BCF的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線(xiàn).以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線(xiàn).
(2)已知AO交⊙O于點(diǎn)E,延長(zhǎng)AO交⊙O于點(diǎn)D,tanD=,求的值.
(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,E、F分別在BC、AD上,若想要使四邊形AFCE為平行四邊形,需添加一個(gè)條件,這個(gè)條件不可以是( 。
A. AF=CE B. AE=CF C. ∠BAE=∠FCD D. ∠BEA=∠FCE
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com