如圖所示,點B、F、C、E在同一條直線上,AB∥DF,AC∥DE,F(xiàn)C=BE,AC與DE相等嗎?請說明理由.
分析:求出∠B=∠F,∠ACB=∠DEF,BC=EF,根據(jù)ASA推出△ABC≌△DFE即可.
解答:解:AC=DE,
理由是:∵AB∥DF,AC∥DE,
∴∠B=∠F,∠ACB=∠DEF,
∵FC=BE,
∴BE+EC=CF+EC,
∴BC=EF,
在△ABC和△DFE中
∠B=∠F
BC=EF
∠ACB=∠DEF

∴△ABC≌△DFE(ASA),
∴AC=DE.
點評:本題考查了平行線的性質(zhì),全等三角形的性質(zhì)和判定的應(yīng)用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的對應(yīng)邊相等,對應(yīng)角相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,點E,F(xiàn)分別是線段AC,BC的中點,若EF=2.5厘米,求線段AB的長.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、正方形ABCD、正方形BEFG和正方形RKPF的位置如圖所示,點G在線段DK上,正方形ABCD的邊長為4,F(xiàn)G=3,F(xiàn)P=1,則△DEK的面積為
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、正方形ABCD,正方形BEFG和正方形RKPF的位置如圖所示,點G在線段DK上,且G為BC的三等分點,R為EF中點,正方形BEFG的邊長為4,則△DEK的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鄂州)在平面坐標系中,正方形ABCD的位置如圖所示,點A的坐標為(1,0),點D的坐標為(0,2),延長CB交x軸于點A1,作正方形A1B1C1C,延長C1B1交x軸于點A2,作正方形A2B2C2C1,…按這樣的規(guī)律進行下去,第2012個正方形的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,點C在線段BE上,在BE同側(cè)作等邊△ABC和等邊△DCE,那么,從旋轉(zhuǎn)的角度我們可以看到,△ACE旋轉(zhuǎn)后與△BCD重合.
(1)寫出旋轉(zhuǎn)角的度數(shù)及旋轉(zhuǎn)方向;
(2)在圖中經(jīng)過旋轉(zhuǎn)后能夠重合的三角形共有哪幾對?
(3)如果∠2=40°,那么∠BDE=
80°
80°

查看答案和解析>>

同步練習(xí)冊答案