【題目】為評估九年級學生在“新冠肺炎”疫情期間“空中課堂”的學習效果,某中學抽取了部分參加調研測試的學生成績作為樣本,并把樣本分為優(yōu)、良、中、差四類,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據圖中提供的信息解答下列問題:
(1)在這次調查中,一共抽取了多少名學生;
(2)通過計算補全條形統(tǒng)計圖;
(3)該校九年級共有320人參加了這次調研測試,請估算該校九年級共有多少名學生的成績達到了優(yōu)秀?
科目:初中數學 來源: 題型:
【題目】如圖,拋物線L1:y=-x2-2x+3交x軸于A,B兩點,交y軸于M點拋物線L1向右平移2個單位得到拋物線L2,L2交x軸于C,D兩點.
(1)求拋物線L2對應的函數表達式;
(2)拋物線L1或L2在x軸上方的部分是否存在點N,使以A,C,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標;若不存在,請說明理由;
(3)若點P是拋物線L1上的一個動點(P不與點A,B重合),那么點P關于原點的對稱點Q是否在拋物線L2上?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】ABCD中,E是CD邊上一點,
(1)將△ADE繞點A按順時針方向旋轉,使AD、AB重合,得到△ABF,如圖1所示.觀察可知:與DE相等的線段是 ,∠AFB=∠
(2)如圖2,正方形ABCD中,P、Q分別是BC、CD邊上的點,且∠PAQ=45°,試通過旋轉的方式說明:DQ+BP=PQ;
(3)在(2)題中,連接BD分別交AP、AQ于M、N,你還能用旋轉的思想說明BM2+DN2=MN2嗎?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,∠BAD=90°,點E在BC的延長線上,且∠DEC=∠BAC.
(1)求證:DE是⊙O的切線;
(2)若AC∥DE,當AB=8,CE=2時,求AC的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著地鐵和共享單車的發(fā)展,“地鐵+單車”已成為很多市民出行的選擇.李華從文化宮站出發(fā),先乘坐地鐵,準備在離家較近的A,B,C,D,E中的某一站出地鐵,再騎共享單車回家.設他出地鐵的站點與文化宮站的距離為(單位:km),乘坐地鐵的時間(單位:min)是關于的一次函數,其關系如下表:
地鐵站 | A | B | C | D | E |
x/km | 7 | 9 | 11 | 12 | 13 |
y1/min | 16 | 20 | 24 | 26 | 28 |
(1)求關于的函數解析式;
(2)李華騎單車的時間(單位:min)也受的影響,其關系可以用=2-11+78來描述.求李華應選擇在哪一站出地鐵,才能使他從文化宮站回到家所需的時間最短,并求出最時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數拋物線過點和,對稱軸為直線.
(1)求二次函數的表達式和頂點的坐標.
(2)將拋物線在坐標平面內平移,使其過原點,若在平移后,第二象限的拋物線上存在點,使為等腰直角三角形,請求出拋物線平移后的表達式,并指出其中一種情況的平移方式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,△ABC和△BDE都是等腰直角三角形,∠ACB=∠BDE=90°,點F是AE的中點,連接DF,CF.
(1)如圖1,點D,E分別在AB,BC邊上,填空:CF與DF的數量關系是 ,位置關系是 ;
(2)如圖2,將圖1中的△BDE繞B順時針旋轉45°得到圖2,請判斷(1)中CF與DF的數量關系和位置關系是否仍然成立,如果成立,請加以證明;如果不成立,請說明理由;
(3)如圖3,將圖1中的△BDE繞B順時針旋轉90°得到圖3,如果BD=2,AC=3,請直接寫出CF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】解不等式組:.請結合連意填空,完成本題的解答.
(1)解不等式①,得 ;
(2)解不等式②,得 ;
(3)把不等式①和②的解集在數軸上表示出來;
(4)原不等式組的解集為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com