【題目】如圖,扇形AOD中,∠AOD=90°,OA=6,點P為弧AD上任意一點(不與點A和D重合),PQ⊥OD于點Q,點I為△OPQ的內(nèi)心,過O、I和D三點的圓的半徑為r,則當(dāng)點P在弧AD上運動時,求r的值.
【答案】r的值為3.
【解析】
連OI,PI,DI,由△OPH的內(nèi)心為I,可得到∠PIO=180°-∠IPO-∠IOP=180°-
(∠HOP+∠OPH)=135°,并且易證△OPI≌△ODI,得到∠DIO=∠PIO=135°,所以點I在以OD為弦,并且所對的圓周角為135°的一段劣弧上;過D、I、O三點作⊙O′,如圖,連O′D,O′O,在優(yōu)弧AO取點P′,連P′D,P′O,可得∠DP′O=180°-135°=45°,得∠DO′O=90°,O′O=3 .
解:如圖,連OI,PI,DI,
∵△OPH的內(nèi)心為I,
∴∠IOP=∠IOD,∠IPO=∠IPH,
∴∠PIO=180°﹣∠IPO﹣∠IOP=180°﹣(∠HOP+∠OPH),
而PH⊥OD,即∠PHO=90°,
∴∠PIO=180°﹣(∠HOP+∠OPH)=180°﹣(180°﹣90°)=135°,
在△OPI和△ODI中,
,
∴△OPI≌△ODI(SAS),
∴∠DIO=∠PIO=135°,
所以點I在以O(shè)D為弦,并且所對的圓周角為135°的一段劣弧上;
過D、I、O三點作⊙O′,如圖,連O′D,O′O,
在優(yōu)弧DO取點P′,連P′D,P′O,
∵∠DIO=135°,
∴∠DP′O=180°﹣135°=45°,
∴∠DO′O=90°,而OD=6,
∴OO′=DO′=3,
∴r的值為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)在實施居民用水額定管理前,對居民生活用水情況進行了調(diào)查,下表是通過簡單隨機抽樣獲得的50個家庭去年月平均用水量(單位:噸),并將調(diào)查數(shù)據(jù)進行如下整理:
4.7 2.1 3.1 2.3 5.2 2.8 7.3 4.3 4.8 6.7
4.5 5.1 6.5 8.9 2.2 4.5 3.2 3.2 4.5 3.5
3.5 3.5 3.6 4.9 3.7 3.8 5.6 5.5 5.9 6.2
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
頻數(shù)分布表
分組 | 劃記 | 頻數(shù) |
2.0<x≤3.5 | 正正 | 11 |
3.5<x≤5.0 | 19 | |
5.0<x≤6.5 | ||
6.5<x≤8.0 | ||
8.0<x≤9.5 | 2 | |
合計 | 50 |
(1)把上面頻數(shù)分布表和頻數(shù)分布直方圖補充完整;
(2)從直方圖中你能得到什么信息?(寫出兩條即可);
(3)為了鼓勵節(jié)約用水,要確定一個用水量的標(biāo)準(zhǔn),超出這個標(biāo)準(zhǔn)的部分按1.5倍價格收費,若要使60%的家庭收費不受影響,你覺得家庭月均用水量應(yīng)該定為多少?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠BAC=90,AB=AC.點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側(cè)作等腰直角三角形ADE,使DAE=90,連結(jié)CE.
探究:如圖①,當(dāng)點D在線段BC上時,證明BC=CE+CD.
應(yīng)用:在探究的條件下,若AB=,CD=1,則△DCE的周長為_______.
拓展:(1)如圖②,當(dāng)點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為_______.
(2)如圖③,當(dāng)點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,OP平分∠AOB,且OP=1.若點M,N分別在OA,OB上,且△PMN為等邊三角形,則滿足上述條件的△PMN有( )
A.1個B.2個C.3個D.無數(shù)個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是等邊三角形內(nèi)一點,將線段繞點順時針旋轉(zhuǎn)60°得到線段,連接.若,,,則四邊形的面積為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計劃購買A,B兩種型號的機器人搬運材料.已知A型機器人比B型機器人每小時多搬運30kg材料,且A型機器人搬運1000kg材料所用的時間與B型機器人搬運800kg材料所用的時間相同.
(1)求A,B兩種型號的機器人每小時分別搬運多少材料;
(2)該公司計劃采購A,B兩種型號的機器人共20臺,要求每小時搬運材料不得少于2800kg,則至少購進A型機器人多少臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) y=ax2+bx+c(a≠0),過(1,y1)(2,y2).
①若 y1>0 時,則 a+b+c>0
②若 a=b 時,則 y1<y2
③若 y1<0,y2>0,且 a+b<0,則 a>0
④若 b=2a﹣1,c=a﹣3,且 y1>0,則拋物線的頂點一定在第三象限上述四個判斷正確的有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某同學(xué)想測量旗桿的高度,他在某一時刻測得1米長的竹竿豎直放置時影長1.5米,在同一時刻測量旗桿的影長時,因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測得落在地面上的影長為21米,留在墻上的影高為2米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市正在開展“食品安全城市”創(chuàng)建活動,為了解學(xué)生對食品安全知識的了解情況,學(xué)校隨機抽取了部分學(xué)生進行問卷調(diào)查,將調(diào)查結(jié)果按照“非常了解、了解、了解較少、不了解”四類分別進行統(tǒng)計,并繪制了下列兩幅統(tǒng)計圖(不完整).請根據(jù)圖中信息,解答下列問題:
(1)此次共調(diào)查了__________名學(xué)生;
(2)扇形統(tǒng)計圖中所在扇形的圓心角為__________°;
(3)將上面的條形統(tǒng)計圖補充完整;
(4)若該校共有1600名學(xué)生,請你估計對食品安全知識“非常了解”的學(xué)生的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com