【題目】如圖,在△ABC中,AB=AC,∠BAC=50°,∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合,則∠CEO的度數(shù)是_____.
【答案】50°
【解析】
試題連結(jié)OB,根據(jù)角平分線定義得到∠OAB=∠ABO=25°,再根據(jù)等腰三角形的性質(zhì)得到∠ABC=∠ACB=65°,再根據(jù)線段垂直平分線的性質(zhì)得到OA=OB,則∠OBA=∠OAB=25°,所以∠1=65°﹣25°=40°,由于AB=AC,OA平分∠BAC,根據(jù)等腰三角形的性質(zhì)得OA垂直平分BC,則BO=OC,所以∠1=∠2=40°,然后根據(jù)折疊的性質(zhì)得到EO=EC,于是∠2=∠3=40°,再根據(jù)三角形內(nèi)角和定理計(jì)算∠OEC.
解:連結(jié)OB,
∵∠BAC=50°,∠BAC的平分線與AB的中垂線交于點(diǎn)O,
∴∠OAB=∠ABO=25°,
∵AB=AC,∠BAC=50°,
∴∠ABC=∠ACB=65°,
∵OD垂直平分AB,
∴OA=OB,
∴∠OBA=∠OAB=25°,
∴∠1=65°﹣25°=40°,
∵AB=AC,OA平分∠BAC,
∴OA垂直平分BC,
∴BO=OC,
∴∠1=∠2=40°,
∵點(diǎn)C沿EF折疊后與點(diǎn)O重合,
∴EO=EC,
∴∠2=∠3=40°,
∴∠OEC=180°﹣40°﹣40°=100°.
故答案為100°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:平面直角坐標(biāo)系中,四邊形OABC的頂點(diǎn)分別為O(0,0)、A(5,0)、B(m,2)、C(m﹣5,2).
(1)問:是否存在這樣的m,使得在邊BC上總存在點(diǎn)P,使∠OPA=90°?若存在,求出m的取值范圍;若不存在,請說明理由.
(2)當(dāng)∠AOC與∠OAB的平分線的交點(diǎn)Q在邊BC上時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大潤發(fā)超市進(jìn)了一批成本為8元/個的文具盒.調(diào)查發(fā)現(xiàn):這種文具盒每個星期的銷售量y(個)與它的定價(jià)x(元/個)的關(guān)系如圖所示:
(1)求這種文具盒每個星期的銷售量y(個)與它的定價(jià)x(元/個)之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
(2)每個文具盒的定價(jià)是多少元時(shí),超市每星期銷售這種文具盒(不考慮其他因素)可獲得的利潤為1200元?
(3)若該超市每星期銷售這種文具盒的銷售量不少于115個,且單件利潤不低于4元(x為整數(shù)),當(dāng)每個文具盒定價(jià)多少元時(shí),超市每星期利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過邊長為1的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長為( )
A. B. C. D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F(xiàn)在AC上,BD=DF;
證明:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了綠化校園,計(jì)劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查,榕樹的單價(jià)比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.
(1)榕樹和香樟樹的單價(jià)各是多少?
(2)根據(jù)學(xué)校實(shí)際情況,需購買兩種樹苗共150棵,總費(fèi)用不超過10840元,且購買香樟樹的棵數(shù)不少于榕樹的1.5倍,請你算算該校本次購買榕樹和香樟樹共有哪幾種方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B.有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放無蓋的圓柱形桶,試圖讓網(wǎng)球落入桶內(nèi).已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑CD為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計(jì)).
(1)如圖,建立直角坐標(biāo)系,求此拋物線的解析式;
(2)如果豎直擺放7個圓柱形桶時(shí),網(wǎng)球能不能落入桶內(nèi)?
(3)當(dāng)豎直擺放圓柱形桶至多多少個時(shí),網(wǎng)球可以落入桶內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在5×4正方形網(wǎng)格中,有A,B,C三個格點(diǎn)(線與線的交點(diǎn)).
(1)若小正方形邊長為1,則AC= , AB=;
(2)在圖中再找出一個格點(diǎn)D,滿足:D與A,B,C三點(diǎn)中的兩點(diǎn)組成的三角形恰好與△ABC相似:∽△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古埃及人曾經(jīng)用如圖所示的方法畫直角:把一根長繩打上等距離的13個結(jié),然后以3個結(jié)間距、4個結(jié)間距、5個結(jié)間距的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角,這樣做的道理是( 。
A. 直角三角形兩個銳角互補(bǔ)
B. 三角形內(nèi)角和等于180°
C. 如果三角形兩條邊長的平方和等于第三邊長的平方
D. 如果三角形兩條邊長的平方和等于第三邊長的平方,那么這個三角形是直角三角形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com