【題目】如圖,AD是△ABC的中線,E、F分別是ADAD延長線上的點(diǎn),DE=DF,連接BF、CE,下列說法:①CE=BF②△ABD和△ACD面積相等;③BFCE④△BDF≌△CDE.

其中正確的有( 。

A. 1 B. 2 C. 3 D. 4

【答案】D

【解析】根據(jù)題意,結(jié)合已知條件與全等的判定方法對選項(xiàng)一一進(jìn)行分析論證,排除錯誤答案.

∵AD是△ABC的中線,∴BD=CD,
又∠CDE=∠BDF,DE=DF,
∴△BDF≌△CDE,故④正確;
由△BDF≌△CDE,可知CE=BF,故①正確;
∵AD是△ABC的中線,∴△ABD和△ACD等底等高,
∴△ABD和△ACD面積相等,故②正確;
由△BDF≌△CDE,可知∠FBD=∠ECD
∴BF∥CE,故③正確.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC與△BDE均為等邊三角形,ABBD,若△ABC不動,將△BDE繞點(diǎn)B旋轉(zhuǎn)則在旋轉(zhuǎn)過程中,AECD的大小關(guān)系為( )

A. AE=CD B. AECD C. AECD D. 無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算(﹣3)+(﹣9)的結(jié)果是(
A.+6
B.﹣6
C.﹣12
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將點(diǎn)A1,-3)向左平移3個單位長度,再向上平移5個單位長度后得到的點(diǎn)A的坐標(biāo)為 ______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016廣西省南寧市第24題)如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線y=x2交于B,C兩點(diǎn).

(1)求拋物線的解析式及點(diǎn)C的坐標(biāo);

(2)求證:ABC是直角三角形;

(3)若點(diǎn)N為x軸上的一個動點(diǎn),過點(diǎn)N作MNx軸與拋物線交于點(diǎn)M,則是否存在以O(shè),M,N為頂點(diǎn)的三角形與ABC相似?若存在,請求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,點(diǎn)A表示的數(shù)是5,若點(diǎn)B與點(diǎn)A之間距離是8,則點(diǎn)B表示的數(shù)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且ADMND,

BEMNE.

(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時,求證:DE=AD+BE;

(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時,請寫出DE、AD、BE之間的等量關(guān)系并加以證明.

(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時,試問DE、AD、BE之間又有怎樣的等量關(guān)系?請直接寫出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEABE,DFACF,若BD=CD,ABD與∠C互補(bǔ)

1)求證:AD平分∠BAC;(2)若AB=5AC=9,則AE=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某家電生產(chǎn)企業(yè)根據(jù)市場調(diào)查分析,決定調(diào)整產(chǎn)品生產(chǎn)方案,準(zhǔn)備每周(按120個工時計算)生產(chǎn)空調(diào)、冰箱、彩電共360臺,且彩電至少生產(chǎn)60臺,已知生產(chǎn)這些家電產(chǎn)品每臺所需工時和每臺產(chǎn)值如下表:

問每周應(yīng)生產(chǎn)空調(diào)、冰箱、彩電各多少臺,才能使產(chǎn)值最高?最高產(chǎn)值是多少?

查看答案和解析>>

同步練習(xí)冊答案