【題目】如圖,在平行四邊形ABCD中,M,N分別為BC,CD的中點,AM=1,AN=2,∠MAN=60°,AM ,DC的延長線相交于點E,則AB的長為_____________;
【答案】
【解析】分析:延長DC和AM交于E,過點E作EH⊥AN于點H,易證△ABM≌△ECM,再證得AB=NE,因為AN=2,AE=2AM=2,且∠MAN=60°,可得∠AEH=30°,AH=AE=1,根據(jù)勾股定理可得EH = ,EN=2,即可得AB=.
詳解:
如圖,延長DC和AM交于E,過點E作EH⊥AN于點H.
∵四邊形ABCD為平行四邊形,
∴AB∥CE,
∴∠BAM=∠CEM,∠B=∠ECM.
∵M為BC的中點,
∴BM=CM.
在△ABM和△ECM中,
,
∴△ABM≌△ECM(AAS),
∴AB=CD=CE,AM=EM=4,
∵N為邊DC的中點,
∴NE=3NC=AB,即AB=NE,
∵AN=2,AE=2AM=2,且∠MAN=60°,
∴∠AEH=30°,
∴AH=AE=1,
∴EH= = ,
∴NH=AN-AH=2-1=1,
∴EN==2,
∴AB=×2=;
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學舉行演講比賽,賽后整理參賽學生的成績,將比賽成績分為A,B,C,D四個等級,把結果列成下表(其中,m是常數(shù))并繪制如圖所示的扇形統(tǒng)計圖(部分).
等級 | A | B | C | D |
人數(shù) | 6 | 10 | m | 8 |
(1)求m的值和A等級所占圓心角α的大;
(2)若從本次比賽中獲得A等級的學生中,選出2名取參加市中心學生演講比賽,已知A等級中男生有2名,求出所選2名學生中恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請仔細觀察如圖所示的折紙過程,然后回答下列問題:
(1)的度數(shù)為__________;
(2)與有何數(shù)量關系:______;
(3)與有何數(shù)量關系:__________;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】透明的口袋里裝有3個球,這3個球分別標有數(shù)字1、2、3,這些球除了數(shù)字外都相同。
(1)如果從袋中任意摸出一個球,那么摸到標有數(shù)字是2的球的概率是多少?(3分)
(2)小明和小東玩摸球游戲,游戲規(guī)則如下:先由小明隨機摸出一個球,記下球的數(shù)字后放回,攪勻后再由小東隨機摸出一個球,記下球的數(shù)字.誰摸出的球的數(shù)字大,誰獲勝.現(xiàn)請你利用樹狀圖或列表的方法分析游戲規(guī)則對雙方是否公平?并說明理由。(6分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】首先,我們學習一道“最值”問題的解答:
問題:已知x>0,求的最小值.
解答:對于x>0,我們有:
當,即時,上述不等式取等號,所以的最小值是
由解答知,的最小值是.
弄清上述問題及解答方法之后,解答下述問題:
(1)求的最小值.
(2)在直角坐標系 xOy 中,一次函數(shù)的圖象與 x 軸、 y 軸分別交于 A 、 B 兩點.
①求 A 、 B 兩點的坐標;
②求當OAB 的面積值等于時,用b 表示 k ;
③在②的條件下,求AOB 面積的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年元旦期間,某商場打出促銷廣告,如表所示.
優(yōu)惠 條件 | 一次性購物不超過200元 | 一次性購物超過200元,但不超過500元 | 一次性購物超過500元 |
優(yōu)惠 辦法 | 沒有優(yōu)惠 | 全部按九折優(yōu)惠 | 其中500元仍按九折優(yōu)惠,超過500元部分按八折優(yōu)惠 |
小欣媽媽兩次購物分別用了134元和490元.
(1)小欣媽媽這兩次購物時,所購物品的原價分別為多少?
(2)若小欣媽媽將兩次購買的物品一次全部買清,則她是更節(jié)省還是更浪費?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠甲、乙兩人加工同一種零件,每小時甲比乙多加工10個這種零件,甲加工150個這種零件所用的時間與乙加工120個這種零件所用的時間相等,
(1)甲、乙兩人每小時各加工多少個這種零件?
(2)該工廠計劃加工920個零件,甲參與加工這批零件不超過12天,則乙至少加工多少天才能加工完這批零件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:正方形ABCD中,∠MAN=45°,∠MAN繞點A順時針旋轉,它的兩邊分別交CB、DC(或它們的延長線)于點M、N.
(1)當∠MAN繞點A旋轉到BM=DN時(如圖1),請你直接寫出BM、DN和MN的數(shù)量關系:__________.
(2)當∠MAN繞點A旋轉到BM≠DN時(如圖2),(1)中的結論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.
(3)當∠MAN繞點A旋轉到如圖3的位置時,線段BM、DN和MN之間又有怎樣的數(shù)量關系?請寫出直接寫出結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com