【題目】如圖,在平行四邊形ABCD中,M,N分別為BCCD的中點,AM=1,AN=2,MAN=60°,AM ,DC的延長線相交于點E,則AB的長為_____________;

【答案】

【解析】分析:延長DCAM交于E,過點EEH⊥AN于點H,易證△ABM≌△ECM,再證得AB=NE,因為AN=2,AE=2AM=2,且∠MAN=60°,可得∠AEH=30°,AH=AE=1,根據(jù)勾股定理可得EH = ,EN=2,即可得AB=.

詳解:

如圖,延長DCAM交于E,過點EEH⊥AN于點H.

∵四邊形ABCD為平行四邊形,

∴AB∥CE,

∴∠BAM=∠CEM,∠B=∠ECM.

∵MBC的中點,

∴BM=CM.

在△ABM和△ECM中,

,

∴△ABM≌△ECM(AAS),

∴AB=CD=CE,AM=EM=4,

∵N為邊DC的中點,

∴NE=3NC=AB,即AB=NE,

∵AN=2,AE=2AM=2,且∠MAN=60°,

∴∠AEH=30°,

∴AH=AE=1,

∴EH= = ,

∴NH=AN-AH=2-1=1,

∴EN==2,

∴AB=×2=;

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學舉行演講比賽,賽后整理參賽學生的成績,將比賽成績分為A,B,C,D四個等級,把結果列成下表(其中,m是常數(shù))并繪制如圖所示的扇形統(tǒng)計圖(部分).

等級

A

B

C

D

人數(shù)

6

10

m

8

(1)求m的值和A等級所占圓心角α的大;

(2)若從本次比賽中獲得A等級的學生中,選出2名取參加市中心學生演講比賽,已知A等級中男生有2名,求出所選2名學生中恰好是一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請仔細觀察如圖所示的折紙過程,然后回答下列問題:

1的度數(shù)為__________

2有何數(shù)量關系:______;

3有何數(shù)量關系:__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個正六面體骰子連擲兩次,它們的點數(shù)都是4的概率是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】透明的口袋里裝有3個球,這3個球分別標有數(shù)字1、2、3,這些球除了數(shù)字外都相同。

1)如果從袋中任意摸出一個球,那么摸到標有數(shù)字是2的球的概率是多少?(3分)

2)小明和小東玩摸球游戲,游戲規(guī)則如下:先由小明隨機摸出一個球,記下球的數(shù)字后放回,攪勻后再由小東隨機摸出一個球,記下球的數(shù)字.誰摸出的球的數(shù)字大,誰獲勝.現(xiàn)請你利用樹狀圖或列表的方法分析游戲規(guī)則對雙方是否公平?并說明理由。(6分)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】首先,我們學習一道“最值”問題的解答:

問題:已知x0,求的最小值.

解答:對于x0,我們有:

,即時,上述不等式取等號,所以的最小值是

由解答知,的最小值是.

弄清上述問題及解答方法之后,解答下述問題:

1)求的最小值.

2)在直角坐標系 xOy 中,一次函數(shù)的圖象與 x 軸、 y 軸分別交于 AB 兩點.

①求 A 、 B 兩點的坐標;

②求當OAB 的面積值等于時,用b 表示 k ;

③在②的條件下,求AOB 面積的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017年元旦期間,某商場打出促銷廣告,如表所示.

優(yōu)惠

條件

一次性購物不超過200

一次性購物超過200元,但不超過500

一次性購物超過500

優(yōu)惠

辦法

沒有優(yōu)惠

全部按九折優(yōu)惠

其中500元仍按九折優(yōu)惠,超過500元部分按八折優(yōu)惠

小欣媽媽兩次購物分別用了134元和490元.

1)小欣媽媽這兩次購物時,所購物品的原價分別為多少?

2)若小欣媽媽將兩次購買的物品一次全部買清,則她是更節(jié)省還是更浪費?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠甲、乙兩人加工同一種零件,每小時甲比乙多加工10個這種零件,甲加工150個這種零件所用的時間與乙加工120個這種零件所用的時間相等,

(1)甲、乙兩人每小時各加工多少個這種零件?

(2)該工廠計劃加工920個零件,甲參與加工這批零件不超過12天,則乙至少加工多少天才能加工完這批零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD中,MAN=45°,∠MAN繞點A順時針旋轉,它的兩邊分別交CBDC(或它們的延長線)于點M、N

(1)MAN繞點A旋轉到BM=DN時(如圖1),請你直接寫出BMDNMN的數(shù)量關系:__________

(2)當MAN繞點A旋轉到BMDN時(如圖2),(1)中的結論是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.

(3)當MAN繞點A旋轉到如圖3的位置時,線段BM、DNMN之間又有怎樣的數(shù)量關系?請寫出直接寫出結論

查看答案和解析>>

同步練習冊答案