如圖:已知AB=AE,BC=ED,∠B=∠E,AF⊥CD,F(xiàn)為垂足,求證:①AC=AD; ②CF=DF.
【考點(diǎn)】等腰三角形的判定;全等三角形的判定與性質(zhì).
【專題】證明題.
【分析】由已知可利用SAS判定△ABC≌△AED,根據(jù)全等三角形的對(duì)應(yīng)邊相等可得到AC=AD,即△ACD是等腰三角形,已知AF⊥CD,則根據(jù)等腰三角形三線合一的性質(zhì)即可推出CF=DF.
【解答】證明:①∵AB=AE,BC=ED,∠B=∠E,
∴△ABC≌△AED(SAS),
∴AC=AD,
②∵AF⊥CD,AC=AD,
∴CF=FD(三線合一性質(zhì)).
【點(diǎn)評(píng)】此題主要考查等腰三角形的判定及全等三角形的判定與性質(zhì)的綜合運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在3.5,﹣0.5,0,4這四個(gè)數(shù)中,絕對(duì)值最小的一個(gè)數(shù)是( 。
A.3.5 B.﹣0.5 C.0 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在矩形ABCD中,AB=5,BC=24,M是BC的中點(diǎn),若點(diǎn)P為線段AD上的一點(diǎn),連接AM、PM,△PAM是以AP為腰的等腰三角形,則AP的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,則∠DEC等于( 。
A.7.5° B.10° C.15° D.18°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,在四邊形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,則∠BCD的度數(shù)為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
京廣高速鐵路工程指揮部,要對(duì)某路段工程進(jìn)行招標(biāo),接到了甲、乙兩個(gè)工程隊(duì)的投標(biāo)書.從投標(biāo)書中得知:甲隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)是乙隊(duì)單獨(dú)完成這項(xiàng)工程所需天數(shù)的;若由甲隊(duì)先做10天,剩下的工程再由甲、乙兩隊(duì)合作30天完成.
(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?
(2)已知甲隊(duì)每天的施工費(fèi)用為8.4萬(wàn)元,乙隊(duì)每天的施工費(fèi)用為5.6萬(wàn)元.工程預(yù)算的施工費(fèi)用為500萬(wàn)元.為縮短工期并高效完成工程,擬安排預(yù)算的施工費(fèi)用是否夠用?若不夠用,需追加預(yù)算多少萬(wàn)元?請(qǐng)給出你的判斷并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,以某點(diǎn)為位似中心,將△AOB進(jìn)行位似變換得到△CDE,則位似中心的坐標(biāo)為( 。
A.(0,0) B.(1,1) C.(2,2) D.(3,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,∠BAC=90°,以AB為直徑作⊙O,BD∥OC交⊙O于D點(diǎn),CD與AB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:CD是⊙O的切線;
(2)若BE=2,DE=4,求CD的長(zhǎng);
(3)在(2)的條件下,如圖2,AD交BC、OC分別于F、G,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com