如圖,在平面直角坐標(biāo)系中,已知Rt△AOB的兩條直角邊0A、08分別在y軸和x軸上,并且OA、OB的長(zhǎng)分別是方程x2—7x+12=0的兩根(OA<0B),動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始在線(xiàn)段AO上以每秒l個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始在線(xiàn)段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t秒.
(1)求A、B兩點(diǎn)的坐標(biāo)。
(2)求當(dāng)t為何值時(shí),△APQ與△AOB相似,并直接寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo).
(3)當(dāng)t=2時(shí),在坐標(biāo)平面內(nèi),是否存在點(diǎn)M,使以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出M點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(1)A(0,3), B(4,0)(2)t= ,Q();t= ,Q()(3)存在。M1), M2),M3
解:(1)由x2-7 x +12=0解得x1=3,x2=4。
∵OA<OB ,∴OA="3" , OB=4!郃(0,3), B(4,0)。
(2)由OA="3" , OB=4,根據(jù)勾股定理,得AB=5。
由題意得,AP=t,  AQ=5-2t 。分兩種情況討論:
①當(dāng)∠APQ=∠AOB時(shí),如圖1,

△APQ∽△AOB!,即 解得 t= 。∴Q()。
②當(dāng)∠AQP=∠AOB時(shí),如圖2,

△APQ∽△ABO!,即 解得 t= 。∴Q()。
(3)存在。M1), M2),M3)。
(1)解出一元二次方程,結(jié)合OA<OB即可求出A、B兩點(diǎn)的坐標(biāo)。
(2)分∠APQ=∠AOB和∠AQP=∠AOB兩種情況討論即可。
(3)當(dāng)t=2時(shí),如圖,

OP=2,BQ=4,∴P(0,1),Q()。
若以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形,則
①當(dāng)AQ為對(duì)角線(xiàn)時(shí),點(diǎn)M1的橫坐標(biāo)與點(diǎn)Q的橫坐標(biāo)相同,縱坐標(biāo)為!郙1)。
②當(dāng)PQ為對(duì)角線(xiàn)時(shí),點(diǎn)M2的橫坐標(biāo)與點(diǎn)Q的橫坐標(biāo)相同,縱坐標(biāo)為。∴M2)。
③當(dāng)AP為對(duì)角線(xiàn)時(shí),點(diǎn)Q、M3關(guān)于AP的中點(diǎn)對(duì)稱(chēng)。
由A(0,3),P(0,1)得AP的中點(diǎn)坐標(biāo)為(0,2)。
由Q()得M3的橫坐標(biāo)為,縱坐標(biāo)為!郙3)。
綜上所述,若以A、P、Q、M為頂點(diǎn)的四邊形是平行四邊形,則M點(diǎn)的坐標(biāo)為
)或()或()。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,、的長(zhǎng)是關(guān)于的一元二次方程的兩個(gè)根,且
(1)求的值.
(2)若軸上的點(diǎn),且求經(jīng)過(guò)、兩點(diǎn)的直線(xiàn)的解析式,并判斷是否相似?
(3)若點(diǎn)在平面直角坐標(biāo)系內(nèi),則在直線(xiàn)上是否存在點(diǎn)使以、為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖I是△ABC的內(nèi)心,AI的延長(zhǎng)線(xiàn)交邊BC于點(diǎn)D,交△ABC的外接圓于點(diǎn)E(1)BE與IE相等嗎?為什么?(2)試說(shuō)明IE是AE和DE的比例中項(xiàng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在△ABC中,CF⊥AB于F,ED⊥AB于D,∠1=∠2.
(1)求證:FG∥BC
(2)請(qǐng)你在圖中找出一對(duì)相似三角形,并說(shuō)明相似的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知:如圖,,以為位似中心,按比例尺,把縮小,則點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(   )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在△ABC中,EF//BC,分別交邊兩 點(diǎn),若AE=2,BE=4,則△AEF與 △ABC的面積比為 ___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,小東用長(zhǎng)為3.2 m的竹竿做測(cè)量工具測(cè)量學(xué)校旗桿的高度(竹竿與地面垂直),移動(dòng)竹竿,使竹竿、旗桿頂端的影子恰好落在地面的同一點(diǎn),此時(shí),竹竿與這一點(diǎn)距離8 m、與旗桿相距22 m,則旗桿的高為                                                 
A.12mB.10mC.8mD.7m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,小明晚上由路燈A下的B處走到C處時(shí),測(cè)得影子CD的長(zhǎng)為1米,從C處繼續(xù)往前走2米到達(dá)E處時(shí),測(cè)得影子EF的長(zhǎng)為2米,B、C、D、E、F在同一條直線(xiàn)上,已知小明的身高是1.6米,求路燈A的高度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中有兩點(diǎn)A(4,0)、B(0,2),如果點(diǎn)C在x軸上(C與A不重合),當(dāng)點(diǎn)C的坐標(biāo)為         時(shí),使得由點(diǎn)B、O、C組成的三角形與△AOB相似(至少找出兩個(gè)滿(mǎn)足條件的點(diǎn)的坐標(biāo)).
                                                          

查看答案和解析>>

同步練習(xí)冊(cè)答案