【題目】如圖,A、B、C是反比例函數(shù)y= (k<0)圖象上三點(diǎn),作直線l,使A、B、C到直線l的距離之比為3:1:1,則滿足條件的直線l共有( )
A.4條
B.3條
C.2條
D.1條
【答案】A
【解析】解:如解答圖所示,滿足條件的直線有4條,
故選:A.
【考點(diǎn)精析】掌握反比例函數(shù)的概念和反比例函數(shù)的性質(zhì)是解答本題的根本,需要知道形如y=k/x(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù).自變量x的取值范圍是x不等于0的一切實(shí)數(shù),函數(shù)的取值范圍也是一切非零實(shí)數(shù);性質(zhì):當(dāng)k>0時(shí)雙曲線的兩支分別位于第一、第三象限,在每個(gè)象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時(shí)雙曲線的兩支分別位于第二、第四象限,在每個(gè)象限內(nèi)y值隨x值的增大而增大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)感知:如圖①.AB=AD,AB⊥AD,BF⊥AF于點(diǎn)F,DG⊥AF于點(diǎn)G.求證:△ADG≌△BAF;
(2)拓展:如圖②,點(diǎn)B,C在∠MAN的邊AM,AN上,點(diǎn)E,F(xiàn)在∠MAN在內(nèi)部的射線AD上,∠1,∠2分別是△ABE,△CAF的外角,已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF;
(3)應(yīng)用:如圖③,在△ABC中,AB=AC,AB>BC,點(diǎn)在D邊BC上,CD=2BD,點(diǎn)E,F(xiàn)在線段AD上,∠1=∠2=∠BAC.若△ABC的面積為12,則△ABE與△CDF的面積之和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】由一些相同的小正方體搭成的幾何體的左視圖和俯視圖如圖所示,請(qǐng)?jiān)诰W(wǎng)格中涂出一種該幾何體的主視圖,且使該主視圖是軸對(duì)稱圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列這些復(fù)雜的圖案都是在一個(gè)圖案的基礎(chǔ)上,在“幾何畫板”軟件中拖動(dòng)一點(diǎn)后形成的,它們中每一個(gè)圖案都可以由一個(gè)“基本圖案”通過(guò)連續(xù)旋轉(zhuǎn)得來(lái),旋轉(zhuǎn)的角度是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰三角形ABC在平面直角坐標(biāo)系中的位置如圖所示,已知點(diǎn)A(﹣6,0),點(diǎn)B在原點(diǎn),CA=CB=5,把等腰三角形ABC沿x軸正半軸作無(wú)滑動(dòng)順時(shí)針?lè)D(zhuǎn),第一次翻轉(zhuǎn)到位置①,第二次翻轉(zhuǎn)到位置②…依此規(guī)律,第15次翻轉(zhuǎn)后點(diǎn)C的橫坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】Rt△ABC中,∠A = 3∠C = 90,AB = 3,點(diǎn)Q在邊AB上且BQ =,過(guò)Q作QF∥BC交AC于點(diǎn)F,點(diǎn)P在線段QF上,過(guò)P作PD∥AC交AB于點(diǎn)D,PE∥AB交BC于點(diǎn)E,當(dāng)P到△ABC的三邊的距離之和為3時(shí),PD + PE + PF =_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過(guò)原點(diǎn)O和點(diǎn)A(2,0).
(1)寫出拋物線的對(duì)稱軸與x軸的交點(diǎn)坐標(biāo);
(2)點(diǎn)(x1 , y1),(x2 , y2)在拋物線上,若x1<x2<1,比較y1 , y2的大小;
(3)點(diǎn)B(﹣1,2)在該拋物線上,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對(duì)稱軸對(duì)稱,求直線AC的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在邊AB上,連接CD,將線段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°至CE位置,連接AE.
(1)求證:AB⊥AE;
(2)若BC2=ADAB,求證:四邊形ADCE為正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx﹣3(a,b是常數(shù))的圖象與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0),與y軸交于點(diǎn)C.動(dòng)直線y=t(t為常數(shù))與拋物線交于不同的兩點(diǎn)P、Q.
(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com