C
分析:根據(jù)等腰三角形三線合一的性質(zhì)可得AD=
AC,根據(jù)角平分線的定義可得∠ABD=∠CBD,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠CBD=∠BDE,然后求出∠ABD=∠BDE,根據(jù)等角對等邊的性質(zhì)可得BE=DE,然后求出△ADE的周長=AB+AD,代入數(shù)據(jù)進行計算即可得解.
解答:∵BD平分∠ABC,BD⊥AC,
∴AD=
AC=
×2=1cm,
∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵DE∥BC,
∴∠CBD=∠BDE,
∴∠ABD=∠BDE,
∴BE=DE,
∴△ADE的周長=AE+DE+AD=AE+BE+AD=AB+AD,
∵AB=5cm,
∴△ADE的周長=5+1=6cm.
故選C.
點評:本題考查了等腰三角形三線合一的性質(zhì),等角對等邊的性質(zhì),平行線的性質(zhì),是基礎(chǔ)題,熟記性質(zhì)是解題的關(guān)鍵.