【題目】已知四邊形ABCD是正方形,點E、F分別在邊AB、邊BC上,DE⊥AF,DE與AF交于點O,將線段AE沿AF進行平移至FG,過點G作GH⊥AB的延長線于點H.
(1)判斷四邊形BFGH的形狀并證明;
(2)寫出圖中所有面積相等的圖形.
【答案】
(1)解:∵四邊形ABCD是正方形,
∴AD=AB,∠DAE=∠ABC=90°,
∵DE⊥AF,
∴∠AOE=90°,
∴∠BAF+∠AEO=90°,∠AEO+∠ADE=90°,
∴∠ADE=∠BAD,
在△ADE和△BAF中,
,
∴△ADE≌△BAD,
∴AE=BF,
∵AE=FG,
∴BF=FG,
∵GH⊥AH,FB⊥AH,
∴FB∥GH,
∵FG∥BH,
∴四邊形BFGH是平行四邊形,
∵∠FBH=90°,
∴四邊形BFGH是矩形,
∵FG=BF,
∴四邊形BFGH是正方形.
(2)解:圖中所有面積相等的圖形有:△ADE和△ABF,△ADO和四邊形EBFOD的面積相等.
【解析】(1)由平移的性質和正方形的性質可證出△ADE≌△BAF,AE=FG=BF,進而證出四邊形BFGH是正方形;(2)由△ADE≌△BAF,可得出它們面積相等,同時減去△AOE的面積,得到△ADO和四邊形EBFOD的面積相等.
【考點精析】解答此題的關鍵在于理解正方形的性質的相關知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形,以及對平移的性質的理解,了解①經過平移之后的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖形的形狀與大小都沒有發(fā)生變化;②經過平移后,對應點所連的線段平行(或在同一直線上)且相等.
科目:初中數學 來源: 題型:
【題目】小亮早晨從家騎車到學校,先上坡后下坡,所行路程y(米)與時間x(分鐘)的關系如圖所示,若返回時上坡、下坡的速度仍與去時上、下坡的速度分別相同,則小明從學校騎車回家用的時間是________分鐘.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年中考前,張老師為了解全市初三男生體育考試項目的選擇情況(每人限選一項),在全市范圍內隨機調查了部分初三男生,將調查結果分成五類:A.推實心球(2kg);B.立定跳遠;C.半場運球;D.跳繩;E.其他,并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據統(tǒng)計圖解答下列問題:
(1)將上面的條形統(tǒng)計圖補充完整;
(2)假定全市初三畢業(yè)學生中有32000名男生,試估計全市初三男生中選半場運球的人數有多少人;
(3)甲、乙兩名初三男生在上述選擇率較高的三個項目:B.立定跳遠;C.半場運球;D.跳繩中各選一項,同時選擇半場運球、立定跳遠的概率是多少?請用列表法或畫樹形圖的方法加以說明并列出所有等可能的結果.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】新冠肺炎疫情爆發(fā)以來,口罩成為需求最為迫切的防護物資.在這個關鍵時刻,我國某企業(yè)利用自身優(yōu)勢轉產口罩,這背后不僅體現出企業(yè)強烈的社會責任感,更是我國人民團結一心抗擊疫情的決心.據悉該企業(yè)3月份的口罩日產能已達到500萬只,預計今后數月內都將保持同樣的產能,則3月份(按31天計算)該企業(yè)生產的口罩總數量用科學記數法表示為( )
A.只B.只C.只D.只
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】鄰邊不相等的平行四邊形紙片,剪去一個菱形,余下的一個四邊形,稱為第一次操作;在余下的四邊形紙片中再剪去一個菱形,又余下一個四邊形,稱為第二次操作;…依此類推,若第n次操作余下的四邊形是菱形,則稱原平行四邊形為n階準菱形,如圖1,ABCD中,若AB=1,BC=2,則ABCD為1階準菱形.
(1)猜想與計算:
鄰邊長分別為3和5的平行四邊形是階準菱形;已知ABCD的鄰邊長分別為a,b(a>b),滿足a=8b+r,b=5r,請寫出ABCD是階準菱形.
(2)操作與推理:
小明為了剪去一個菱形,進行了如下操作:如圖2,把ABCD沿BE折疊(點E在AD上),使點A落在BC邊上的點F處,得到四邊形ABFE.請證明四邊形ABFE是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點O,若BF=6,AB=5,求AE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)同題情境:如圖1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC的度數.
小明想到一種方法,但是沒有解答完:
如圖2,過P作PE∥AB,∴∠APE+∠PAB=180°.
∴∠APE=180°-∠PAB=180°-130°=50°.
∵AB∥CD.∴PE∥CD.
…………
請你幫助小明完成剩余的解答.
(2)問題遷移:請你依據小明的思路,解答下面的問題:
如圖3,AD∥BC,點P在射線OM上運動,∠MDP=∠α,∠BCP=∠β.
①當點P在A、B兩點之間時,∠CPD,∠α,∠β之間有何數量關系?請說明理由.
②當點P在A、B兩點外側時(點P與點O不重合),請直接寫出∠CPD,∠α,∠β之間的數量關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com