【題目】如圖,正方形AOCB的邊長為4,反比例函數(shù)的圖象過點(diǎn)E(3,4).
(1)求反比例函數(shù)的解析式;
(2)反比例函數(shù)的圖象與線段BC交于點(diǎn)D,直線過點(diǎn)D,與線段AB相交于點(diǎn)F,求點(diǎn)F的坐標(biāo);
(3)連接OF,OE,探究∠AOF與∠EOC的數(shù)量關(guān)系,并證明.
【答案】(1)y=;(2)(2,4).(3)∠AOF=∠EOC.見解析
【解析】
試題分析:(1)設(shè)反比例函數(shù)的解析式為y=,把點(diǎn)E(3,4)代入即可求出k的值,進(jìn)而得出結(jié)論;
(2)由正方形AOCB的邊長為4,故可知點(diǎn)D的橫坐標(biāo)為4,點(diǎn)F的縱坐標(biāo)為4.由于點(diǎn)D在反比例函數(shù)的圖象上,所以點(diǎn)D的縱坐標(biāo)為3,即D(4,3),由點(diǎn)D在直線y=﹣x+b上可得出b的值,進(jìn)而得出該直線的解析式,再把y=4代入直線的解析式即可求出點(diǎn)F的坐標(biāo);
(3)在CD上取CG=AF=2,連接OG,連接EG并延長交x軸于點(diǎn)H,由全等三角形的判定定理可知△OAF≌△OCG,△EGB≌△HGC(ASA),故可得出EG=HG.設(shè)直線EG的解析式為y=mx+n,把E(3,4),G(4,2)代入即可求出直線EG的解析式,故可得出H點(diǎn)的坐標(biāo),在Rt△AOF中,AO=4,AE=3,根據(jù)勾股定理得OE=5,可知OH=OE,即OG是等腰三角形底邊EF上的中線.所以O(shè)G是等腰三角形頂角的平分線,由此即可得出結(jié)論.
解:(1)設(shè)反比例函數(shù)的解析式y(tǒng)=,
∵反比例函數(shù)的圖象過點(diǎn)E(3,4),
∴4=,即k=12.
∴反比例函數(shù)的解析式y(tǒng)=;
(2)∵正方形AOCB的邊長為4,
∴點(diǎn)D的橫坐標(biāo)為4,點(diǎn)F的縱坐標(biāo)為4.
∵點(diǎn)D在反比例函數(shù)的圖象上,
∴點(diǎn)D的縱坐標(biāo)為3,即D(4,3).
∵點(diǎn)D在直線y=﹣x+b上,
∴3=﹣×4+b,解得b=5.
∴直線DF為y=﹣x+5,
將y=4代入y=﹣x+5,得4=﹣x+5,解得x=2.
∴點(diǎn)F的坐標(biāo)為(2,4).
(3)∠AOF=∠EOC.
證明:在CD上取CG=AF=2,連接OG,連接EG并延長交x軸于點(diǎn)H.
∵AO=CO=4,∠OAF=∠OCG=90°,AF=CG=2,
∴△OAF≌△OCG(SAS).
∴∠AOF=∠COG.
∵∠EGB=∠HGC,∠B=∠GCH=90°,BG=CG=2,
∴△EGB≌△HGC(ASA).
∴EG=HG.
設(shè)直線EG:y=mx+n,
∵E(3,4),G(4,2),
∴,解得,.
∴直線EG:y=﹣2x+10.
令y=﹣2x+10=0,得x=5.
∴H(5,0),OH=5.
在Rt△AOE中,AO=4,AE=3,根據(jù)勾股定理得OE=5.
∴OH=OE.
∴OG是等腰三角形底邊EH上的中線.
∴OG是等腰三角形頂角的平分線.
∴∠EOG=∠GOH.
∴∠EOG=∠GOC=∠AOF,即∠AOF=∠EOC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小強(qiáng)的年齡比媽媽小33歲,今年媽媽的年齡正好是小強(qiáng)的4倍,小強(qiáng)今年的年齡是
A. 10歲 B. 11歲 C. 12歲 D. 13歲
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)40°,得到△A′B′C′,若點(diǎn)C′恰好落在邊BA的延長線上,且A′C′∥BC,連接CC′,則∠ACC′= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+4分別交x軸,y軸于A,B兩點(diǎn),點(diǎn)C為OB的中點(diǎn),點(diǎn)D在第二象限,且四邊形AOCD為矩形.
(1)直接寫出點(diǎn)A,B的坐標(biāo),并求直線AB與CD交點(diǎn)E的坐標(biāo);
(2)動(dòng)點(diǎn)P從點(diǎn)C出發(fā),沿線段CD以每秒1個(gè)單位長度的速度向終點(diǎn)D運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿線段AO以每秒1個(gè)單位長度的速度向終點(diǎn)O運(yùn)動(dòng),過點(diǎn)P作PH⊥OA,垂足為H,連接NP.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
①若△NPH的面積為1,求t的值;
②點(diǎn)Q是點(diǎn)B關(guān)于點(diǎn)A的對稱點(diǎn),問BP+PH+HQ是否有最小值,如果有,求出相應(yīng)的點(diǎn)P的坐標(biāo);如果沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com