【題目】如圖,在平面直角坐標(biāo)系上有個(gè)點(diǎn)A(-1,0),點(diǎn)A第1次向上跳動(dòng)一個(gè)單位至點(diǎn)A1(-1,1),緊接著第2次向右跳動(dòng)2個(gè)單位至點(diǎn)A2(1,1),第3次向上跳動(dòng)1個(gè)單位,第4次向左跳動(dòng)3個(gè)單位,第5次又向上跳動(dòng)1個(gè)單位,第6次向右跳動(dòng)4個(gè)單位,…,依次規(guī)律跳動(dòng)下去,點(diǎn)A第2017次跳動(dòng)至點(diǎn)A2017的坐標(biāo)是( 。
A. (-504,1008) B. (-505,1009) C. (504,1009) D. (-503,1008)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)(﹣1,y1),(1,y2)都在直線y=﹣3x+2上,則y1,y2的值的大小關(guān)系是( )
A. y1<y2 B. y2<y1 C. y1=y2 D. 無法判斷
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.A、B、C三點(diǎn)在數(shù)軸上,A表示的數(shù)為-10,B表示的數(shù)為14,點(diǎn)C在點(diǎn)A與點(diǎn)B之間,且AC=BC.
(1)求A、B兩點(diǎn)間的距離;
(2)求C點(diǎn)對應(yīng)的數(shù);
(3)甲、乙分別從A、B兩點(diǎn)同時(shí)相向運(yùn)動(dòng),甲的速度是1個(gè)單位長度/s,乙的速度是2個(gè)單位長度/s,求相遇點(diǎn)D對應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題背景】
(1)如圖1的圖形我們把它稱為“8字形”,請說明∠A+∠B=∠C+∠D;
【簡單應(yīng)用】
(2)如圖2,AP、CP分別平分∠BAD.∠BCD,若∠ABC=36°,∠ADC=16°,
求∠P的度數(shù);
【問題探究】
(3)如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想∠P的度數(shù),并說明理由.
【拓展延伸】
(4)在圖4中,若設(shè)∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關(guān)系為: ______ (用α、β表示∠P,不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開始,先向右移動(dòng)3個(gè)單位長度,再向左移動(dòng)5個(gè)單位長度,可以看到終點(diǎn)表示的數(shù)是﹣2.
已知點(diǎn)A是數(shù)軸上的點(diǎn),完成下列各題:
(1)如果點(diǎn)A表示的數(shù)是3,將點(diǎn)A先向左移動(dòng)7個(gè)單位長度,再向右移動(dòng)5個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是 , A、B兩點(diǎn)間的距離為;
(2)如果點(diǎn)A表示的數(shù)是﹣4,將點(diǎn)A先向右移動(dòng)168個(gè)單位長度,再向左移動(dòng)256個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是 , A、B兩點(diǎn)間的距離為;
一般地,如果點(diǎn)A表示的數(shù)是m,將點(diǎn)A先向右移動(dòng)n個(gè)單位長度,再向左移動(dòng)t個(gè)單位長度,那么終點(diǎn)B表示的數(shù)是 , A、B兩點(diǎn)間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠1與∠2互為余角,∠1與∠3互為補(bǔ)角,那么下列結(jié)論: ①∠3﹣∠2=90° ②∠3+∠2=270°﹣2∠1 ③∠3﹣∠1=2∠2 ④∠3>∠1+∠2.
正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com