【題目】如圖,有一塊長為米,寬為米的長方形空地,計劃修筑東西、南北走向的兩條道路,其余進行綠化(陰影部分),已知道路寬為米,東西走向的道路與空地北邊界相距1米,則綠化的面積是多少平方米?并求出當a3b2時的綠化面積.

【答案】平方米;40平方米.

【解析】

1)根據(jù)平移的原理,四塊綠化面積可拼成一個長方形,其邊長為原邊長減去再減去道路寬為米,由此即可求綠化的面積的代數(shù)式;然后利用多項式乘多項式法則計算,去括號合并得到最簡結(jié)果,將的值代入計算即可求出值.

解:根據(jù)題意得:(平方米).

則綠化的面積是平方米;

,時,原式(平方米).

故當a3b2時,綠化面積為40平方米.

答:綠化的面積是平方米;當a3,b2時,綠化面積為40平方米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E點為DF上的點,BAC上的點,∠1=∠2,∠C=∠D

試說明:AC∥DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O,A在數(shù)軸上表示的數(shù)分別是0,l,將線段OA分成1000等份,其分點由左向右依次為M1,M2M999;將線段OM1分成1000等份,其分點由左向右依次為N1N2N999;將線段ON1分成1000等份,其分點由左向右依次為P1,P2P999.則點P314所表示的數(shù)用科學記數(shù)法表示為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DBC邊上一點,AB=DB,BE平分∠ABC,交AC于點E,連接DE

1)求證:△ABE≌△DBE

2)若∠A=100°,∠C=50°,求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩種方法證明“四邊形的外角和等于360°”.

如圖,DAE、ABF、BCG、CDH是四邊形ABCD的四個外角.

求證:DAEABFBCG∠CDH360°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市火車站北廣場將于2016年底投入使用,計劃在廣場內(nèi)種植A,B兩種花木共 6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600 棵.
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排13人同時種植這兩種花木,每人每天能種植A花木60棵或B花木40 棵,應分別安排多少人種植A花木和B花木,才能確保同時完成各自的任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC中,AB=AC,點DE分別在直線AB,AC上,且∠DEC=DCE

1)如圖1,點D在線段AB上∠A=90°,若等腰直角三角形的邊與斜邊之比為,求證:

2)如圖2,若點D在線段AB的延長線上,∠A=60°,求證:EB=AD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、 乙兩家超市以相同的價格出售同樣的商品.為了吸引顧客,各自推出不同的優(yōu)惠方案: 在甲超市累計購買商品超出 300 元之后,超出部分按原價八折優(yōu)惠;在乙超市累計購買商品超出 200 元之后,超出部分按原價九折優(yōu)惠.設顧客預計累計購物 ( 300)

1)請用x 的代數(shù)式分別表示顧客在兩家超市購物所付的費用;

2)試比較顧客到哪家超市購物更優(yōu)惠? 說明你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(m,n為常數(shù),且mn≠0,n>0)的圖象是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案