【題目】如圖,已知點(diǎn)A(-2,4)和點(diǎn)B(1,0)都在拋物線上.
(1)求、;
(2)向右平移上述拋物線,記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為,點(diǎn)B的對(duì)應(yīng)點(diǎn)為,若四邊形為菱形,求平移后拋物線的表達(dá)式;
(3)記平移后拋物線的對(duì)稱軸與直線的交點(diǎn)為C,試在軸上找一個(gè)點(diǎn)D,使得以點(diǎn)、C、D為頂點(diǎn)的三角形與△ABC相似.
【答案】(1);
(2);.
(3)D點(diǎn)坐標(biāo)為:D(3,0)或(,0)
【解析】(1)已知了拋物線圖象上A、B兩點(diǎn)的坐標(biāo),將它們代入拋物線的解析式中,即可求得m、n的值;(2)根據(jù)A、B的坐標(biāo),易求得AB的長;根據(jù)平移的性質(zhì)知:四邊形AA′B′B一定為平行四邊形,若四邊形AA′B′B為菱形,那么必須滿足AB=BB′,由此可確定平移的距離,根據(jù)“左加右減”的平移規(guī)律即可求得平移后的拋物線解析式;(3)易求得直線AB′的解析式,聯(lián)立平移后的拋物線對(duì)稱軸,可得到C點(diǎn)的坐標(biāo),進(jìn)而可求出AB、BC、AC、B′C的長,在(2)題中已經(jīng)證得AB=BB′,那么∠BAC=∠BB′C,即A、B′對(duì)應(yīng),若以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似,可分兩種情況考慮:①∠B′CD=∠ABC,此時(shí)△B′CD∽△ABC,②∠B′DC=∠ABC,此時(shí)△B′DC∽△ABC,根據(jù)上述兩種不同的相似三角形所得不同的比例線段,即可求得不同的BD長,進(jìn)而可求得D點(diǎn)的坐標(biāo).
解:(1)由于拋物線經(jīng)過點(diǎn)A(-2,4)和點(diǎn)B(1,0),
則有: ,解得.
(2)由(1)得:,
由A(-2,4)、B(1,0),根據(jù)勾股定理可得,
若四邊形AA′B′B為菱形,則AB=BB′=5,即B′(6,0).
故拋物線需向右平移5個(gè)單位,即:.
(3)依照題意畫出圖形,如圖所示,
由(2)得:平移后拋物線的對(duì)稱軸為:x=4,
∵A(2,4),B′(6,0),∴直線AB′:.
當(dāng)x=4時(shí),y=1,故C(4,1). ∴B′C=,AC=3,BC=.
由(2)知:AB=BB′=5,即∠BAC=∠BB′C.
若以點(diǎn)B′、C、D為頂點(diǎn)的三角形與△ABC相似,
則:①∠B′CD=∠ABC,則△B′CD∽△ABC,可得:,即,∴B′D=3,此時(shí)D(3,0);
②∠B′DC=∠ABC,則△B′DC∽△ABC,可得:即,∴,此時(shí)D(,0).
綜上所述,存在符合條件的D點(diǎn),且坐標(biāo)為:D(3,0)或(,0).
“點(diǎn)睛”本題考查了二次函數(shù)綜合題、平移問題、曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系、勾股定理、菱形的性質(zhì)、等腰三角形的性質(zhì)、相似三角形的判定和性質(zhì);本題主要考查了二次函數(shù)的應(yīng)用問題,在解題時(shí)要根據(jù)二次函數(shù)的圖象和性質(zhì)進(jìn)行綜合分析是本題的關(guān)鍵.要注意分類思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O , 點(diǎn)E是BC的中點(diǎn) . 若OE=3cm , 則AB的長為( 。
A.3cm
B.6cm
C.9cm
D.12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,然后解答后面的問題. 我們知道方程2x+3y=12有無數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得 ,(x、y為正整數(shù))∴ 則有0<x<6.又 為正整數(shù),則 為正整數(shù).
由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入 .
∴2x+3y=12的正整數(shù)解為
問題:
(1)請你寫出方程2x+y=5的一組正整數(shù)解:
(2)若 為自然數(shù),則滿足條件的x值有個(gè);
A.2
B.3
C.4
D.5
(3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問有幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有13位同學(xué)參加學(xué)校組織的才藝表演比賽,已知他們所得的分?jǐn)?shù)互不相同,共設(shè)7個(gè)獲獎(jiǎng)名額,某同學(xué)知道自己的比賽分?jǐn)?shù)后,要判斷自己能否獲獎(jiǎng),在這13名同學(xué)成績的統(tǒng)計(jì)量中只需知道一個(gè)量,它是____.(填“眾數(shù)”“方差”“中位數(shù)”或“平均數(shù)”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程2x2-4x+m-1=0有兩個(gè)相等的實(shí)數(shù)根,則m的值為________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程 + = 恰有一個(gè)實(shí)根,則滿足條件的實(shí)數(shù)a的值的個(gè)數(shù)為( ).
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com