【題目】已知等邊△ABC邊長為2,D為BC中點(diǎn),連接AD.點(diǎn)O在線段AD上運(yùn)動(不含端點(diǎn)A、D),以點(diǎn)O為圓心,長為半徑作圓,當(dāng)O與△ABC的邊有且只有兩個公共點(diǎn)時,DO的取值范圍為_____.
【答案】或
【解析】
根據(jù)題意作圖,根據(jù)O與△ABC的邊有且只有兩個公共點(diǎn)時得到兩種情況,分別討論求解即可.
∵O與△ABC的邊有且只有兩個公共點(diǎn)
∴①當(dāng)圓O與BC相交于兩點(diǎn)時,
如圖,點(diǎn)圓O1與BC相切時,恰好有一個交點(diǎn),此時,O1D=,
故當(dāng)時,O與△ABC的邊有且只有兩個公共點(diǎn);
②當(dāng)圓O與△ABC的AB、AC各交于一點(diǎn)時,
∵等邊△ABC邊長為2,D為BC中點(diǎn)
∴∠B=∠BAC=60°,AD為△ABC的高、中線、∠BAC的角平分線,
∴BD=1,則AD=
如圖,圓O2與△交于3點(diǎn),此時AO2=,
則O2D=-=
∵O與△ABC的邊有且只有兩個公共點(diǎn),則點(diǎn)A在圓O內(nèi)部,
∴當(dāng)時,O與△ABC的邊有且只有兩個公共點(diǎn);
綜上,當(dāng)或時,O與△ABC的邊有且只有兩個公共點(diǎn).
故填:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個花形柱子OA,O恰在水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過OA的任一平面上,拋物線形狀如圖(1)所示.圖(2)建立直角坐標(biāo)系,水流噴出的高度y(米)與水平距離x(米)之間的關(guān)系是.請回答下列問題:
(1)柱子OA的高度是多少米?
(2)噴出的水流距水平面的最大高度是多少米?
(3)若不計其他因素,水池的半徑至少要多少米才能使噴出的水流不至于落在池外?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),且有最小值為﹣2.
(1)求這個函數(shù)的解析式;
(2)函數(shù)的開口方向、對稱軸;
(3)當(dāng)y>0時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育看臺側(cè)面的示意圖如圖所示,觀眾區(qū)AC的坡度i為1:2,頂端C離水平地面AB的高度為10m,從頂棚的D處看E處的仰角α=18°30′,豎直的立桿上C、D兩點(diǎn)間的距離為4m,E處到觀眾區(qū)底端A處的水平距離AF為3m.
求:(1)觀眾區(qū)的水平寬度AB;
(2)頂棚的E處離地面的高度EF.(sin18°30′≈0.32,tanl8°30′≈0.33,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工程隊在我市實施棚戶區(qū)改造過程中承包了一項拆遷工程.原計劃每天拆遷,因為準(zhǔn)備工作不足,第一天少拆遷了.從第二天開始,該工程隊加快了拆遷速度,第三天拆遷了.求:
該工程隊第一天拆遷的面積;
若該工程隊第二天、第三天每天的拆遷面積比前一天增加的百分?jǐn)?shù)相同,求這個百分?jǐn)?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將繞點(diǎn)C按順時針方向旋轉(zhuǎn)至,使點(diǎn)落在BC的延長線上已知∠A=27°,∠B=40° ,則___度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一拱形公路橋,圓弧形橋拱的水面跨度AB=80 m,橋拱到水面的最大高度為20 m.(1)求橋拱的半徑.
(2)現(xiàn)有一艘寬60 m,頂部截面為長方形且高出水面9 m的輪船要經(jīng)過這座拱橋,這艘輪船能順利通過嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,CB=8,AD是△ABC的角平分線,過A、C、D三點(diǎn)的圓與斜邊AB交于點(diǎn)E,連接DE。
(1)求證:AC=AE;
(2)求△ACD外接圓的直徑。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,,為的中點(diǎn),若動點(diǎn)從點(diǎn)出發(fā),沿著的方向運(yùn)動,連接,當(dāng)是直角三角形時,的值為( )
A.4B.7C.4或7D.4或1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com