【題目】一輛慢車(chē)從甲地勻速行駛至乙地,一輛快車(chē)同時(shí)從乙地出發(fā)勻速行駛至甲地,兩車(chē)之間的距離y(千米)與行駛時(shí)間x(小時(shí))的對(duì)應(yīng)關(guān)系如圖所示:
(1)甲乙兩地相距 千米,慢車(chē)速度為 千米/小時(shí).
(2)求快車(chē)速度是多少?
(3)求從兩車(chē)相遇到快車(chē)到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式.
(4)直接寫(xiě)出兩車(chē)相距300千米時(shí)的x值.
【答案】(1)600, 60;(2)快車(chē)速度是90千米/小時(shí);(3)從兩車(chē)相遇到快車(chē)到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式為y=150x﹣600;(4)當(dāng)x=2小時(shí)或x=6小時(shí)時(shí),兩車(chē)相距300千米.
【解析】
1)由當(dāng)x=0時(shí)y=600可得出甲乙兩地間距,再利用速度=兩地間距÷慢車(chē)行駛的時(shí)間,即可求出慢車(chē)的速度;
(2)設(shè)快車(chē)的速度為a千米/小時(shí),根據(jù)兩地間距=兩車(chē)速度之和×相遇時(shí)間,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;
(3)分別求出快車(chē)到達(dá)甲地的時(shí)間及快車(chē)到達(dá)甲地時(shí)兩車(chē)之間的間距,根據(jù)函數(shù)圖象上點(diǎn)的坐標(biāo),利用待定系數(shù)法即可求出該函數(shù)關(guān)系式;
(4)利用待定系數(shù)法求出當(dāng)0≤x≤4時(shí)y與x之間的函數(shù)關(guān)系式,將y=300分別代入0≤x≤4時(shí)及4≤x≤時(shí)的函數(shù)關(guān)系式中求出x值,此題得解.
(1)∵當(dāng)x=0時(shí),y=600,
∴甲乙兩地相距600千米.
600÷10=60(千米/小時(shí)).
故答案為:600;60.
(2)設(shè)快車(chē)的速度為a千米/小時(shí),
根據(jù)題意得:4(60+a)=600,
解得:a=90.
答:快車(chē)速度是90千米/小時(shí).
(3)快車(chē)到達(dá)甲地的時(shí)間為600÷90=(小時(shí)),
當(dāng)x=時(shí),兩車(chē)之間的距離為60×=400(千米).
設(shè)當(dāng)4≤x≤時(shí),y與x之間的函數(shù)關(guān)系式為y=kx+b(k≠0),
∵該函數(shù)圖象經(jīng)過(guò)點(diǎn)(4,0)和(,400),
∴,解得:,
∴從兩車(chē)相遇到快車(chē)到達(dá)甲地時(shí)y與x之間的函數(shù)關(guān)系式為y=150x﹣600.
(4)設(shè)當(dāng)0≤x≤4時(shí),y與x之間的函數(shù)關(guān)系式為y=mx+n(m≠0),
∵該函數(shù)圖象經(jīng)過(guò)點(diǎn)(0,600)和(4,0),
∴,解得:,
∴y與x之間的函數(shù)關(guān)系式為y=﹣150x+600.
當(dāng)y=300時(shí),有﹣150x+600=300或150x﹣600=300,
解得:x=2或x=6.
∴當(dāng)x=2小時(shí)或x=6小時(shí)時(shí),兩車(chē)相距300千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線形拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,則水面下降1m時(shí),水面寬度增加_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Q為正方形ABCD的CD邊上一點(diǎn),CQ=1,DQ=2,P為BC上一點(diǎn),若PQ⊥AQ,則CP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知Rt△ABC中,AC=BC,∠C=90°,D為AB邊的中點(diǎn),∠EDF=90°,∠EDF繞D點(diǎn)旋轉(zhuǎn),它的兩邊分別交AC、CB(或它們的延長(zhǎng)線)于E、F.當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到DE⊥AC于E時(shí)(如圖1),易證.當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到DE和AC不垂直時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立? 若成立,請(qǐng)給予證明;若不成立,,,又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)采用隨機(jī)的方式對(duì)學(xué)生掌握安全知識(shí)的情況進(jìn)行測(cè)評(píng),并按成績(jī)高低分成優(yōu)、良、中、差四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)有關(guān)信息解答:
(1)接受測(cè)評(píng)的學(xué)生共有________人,扇形統(tǒng)計(jì)圖中“優(yōu)”部分所對(duì)應(yīng)扇形的圓心角為_(kāi)_______°,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校共有學(xué)生1200人,請(qǐng)估計(jì)該校對(duì)安全知識(shí)達(dá)到“良”程度的人數(shù);
(3)測(cè)評(píng)成績(jī)前五名的學(xué)生恰好3個(gè)女生和2個(gè)男生,現(xiàn)從中隨機(jī)抽取2人參加市安全知識(shí)競(jìng)賽,請(qǐng)用樹(shù)狀圖或列表法求出抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正確的有( ) 個(gè).
A. 1 B. 2 C. 3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在邊CD上,將該矩形沿AE折疊,使點(diǎn)D落在邊BC上的點(diǎn)F處,過(guò)點(diǎn)F作FG∥CD,交AE于點(diǎn)G,連接DG.
(1)求證:四邊形DEFG為菱形;
(2)若CD=8,CF=4,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=8,點(diǎn)P為AB的中點(diǎn),E為BC上一動(dòng)點(diǎn),過(guò)P點(diǎn)作FP⊥PE交AC于F點(diǎn),經(jīng)過(guò)P、E、F三點(diǎn)確定⊙O.
(1)試說(shuō)明:點(diǎn)C也一定在⊙O上.
(2)點(diǎn)E在運(yùn)動(dòng)過(guò)程中,∠PEF的度數(shù)是否變化?若不變,求出∠PEF的度數(shù);若變化,說(shuō)明理由.
(3)求線段EF的取值范圍,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A. 希望小學(xué)初一年級(jí)的名同學(xué)中,至少有兩個(gè)生日相同的概率是
B. 在投擲骰子時(shí),連投兩次點(diǎn)數(shù)相同的概率與連投兩次點(diǎn)數(shù)都為的概率相等
C. 我們小組共名同學(xué),他們中肯定有兩人在同一月過(guò)生日
D. 一個(gè)游戲的中獎(jiǎng)率是,買(mǎi)張獎(jiǎng)券,一定會(huì)中獎(jiǎng)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com