如圖,在四邊形ABCD中,∠ABC=∠ADC=90,M、N分別是AC、BD的中點,猜一猜MN與BD的位置關系,并說明結(jié)論。

 

【答案】

MN⊥BD

【解析】

試題分析:連接BM、DM,根據(jù)直角三角形斜邊上中線性質(zhì)推出BM=AC,DM=AC,推出BM=DM,在△BMD中,根據(jù)等腰三角形的三線合一的性質(zhì)即可得到結(jié)論.連接BM、DM,

∵∠ABC=90°,∠ADC=90°,M為AC中點,

∴BM=AC,DM=AC,

∴BM=DM,

∵N為BD中點,

∴MN⊥BD.

考點:本題考查了等腰三角形性質(zhì)和直角三角形的性質(zhì)

點評:解答本題的關鍵是熟練掌握直角三角形斜邊上的中線等于斜邊的一半;等腰三角形的三線合一的性質(zhì):等腰三角形的頂角平分線與底邊上的中線、垂線重合

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習冊答案