【題目】在邊長為2的菱形中,,邊的中點,若線段繞點旋轉得線段,

(Ⅰ)如圖①,線段的長__________

(Ⅱ)如圖②,連接,則長度的最小值是__________

【答案】1,

【解析】

)根據(jù)中點定義可求出線段的長;

)當A'MC上時,線段A'C長度最小,作MECD于點E,首先在直角△DME中利用三角函數(shù)求得EDEM的長,然后在直角△MEC中利用勾股定理求得MC的長,然后減去MA'的長即可求解.

解:(1邊的中點,

∴MA=AD=1,

故答案是1

2)當A'MC上時,線段A'C長度最小,作ME⊥CD于點E

菱形ABCD中,∠A=60°,

∴∠EDM=60°,

在直角△MDE中,DE=MDcos∠EDM=×1=,ME=MDsin∠EDM=,

EC=CD+ED=2+=,

在直角△CEM中,MC= = =,

A'MC上時A'C最小,則A′C長度的最小值是:-1

故答案是:-1

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】下面是小華設計的作一個角等于已知角的2的尺規(guī)作圖過程.

已知:

求作:,使得

作法:如圖,

①在射線上任取一點;

②作線段的垂直平分線,交于點,交于點;

③連接

所以即為所求作的角.

根據(jù)小華設計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī)補全圖形(保留作圖痕跡);

(2)完成下面的證明(說明:括號里填寫推理的依據(jù))

證明:∵是線段的垂直平分線,

______(______)

(______)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】去年某市為創(chuàng)評“全國文明城市”稱號,周末團市委組織志愿者進行宣傳活動.班主任梁老師決定從 4 名女班干部(小悅、小文、小雅和小宇)中通過抽簽方式確定 2 名女生去參加.抽簽規(guī)則:將 4 名女班干部姓名分別寫在 4 張完全相同的卡片正面,把四張卡片背面朝上,洗勻后放在桌面上,梁老師先從中隨機抽取一張卡片,記下姓名,再從剩余的 3張卡片中隨機抽取第二張,記下姓名.

1)該班男生“小安被抽中”是 事件,“小悅被抽中”是 事件(填“不可能”或“必然”或“隨機”);第一次抽取卡片“小文被抽中”的概率為   ;

2)試用畫樹狀圖或列表的方法表示這次抽簽所有可能的結果,并求出“小雅被抽中”的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過,兩點,且與軸交于點,拋物線與直線交于,兩點.

1)求拋物線的解析式;

2)坐標軸上是否存在一點,使得是以為底邊的等腰三角形?若存在,請直接寫出點的坐標;若不存在,說明理由.

3點在軸上且位于點的左側,若以,,為頂點的三角形與相似,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=﹣5x+5x軸、y軸分別交于A,C兩點,拋物線yx2+bx+c經(jīng)過A,C兩點,與x軸交于另一點B

1)求拋物線解析式及B點坐標;

2x2+bx+c5x+5的解集   

3)若點M在第一象限內(nèi)拋物線上一動點,連接MA、MB,當點M運動到某一位置時,ABM面積為ABC的面積的倍,求此時點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的有( 。﹤

①絕對值相等的兩數(shù)相等.②若a,b互為相反數(shù),則=﹣1.③如果a大于b,那么a的倒數(shù)小于b的倒數(shù).④任意有理數(shù)都可以用數(shù)軸上的點來表示.⑤x2﹣2x﹣33x3+25是五次四項.⑥兩個負數(shù)比較大小,絕對值大的反而。咭粋數(shù)的相反數(shù)一定小于或等于這個數(shù).⑧正數(shù)的任何次冪都是正數(shù),負數(shù)的任何次冪都是負數(shù).

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線y6x+4的頂點A在直線ykx2上.

1)求直線的函數(shù)表達式;

2)現(xiàn)將拋物線沿該直線方向進行平移,平移后的拋物線的頂點為A,與直線的另一交點為B,與x軸的右交點為C(點C不與點A重合),連接BCAC

。┤鐖D,在平移過程中,當點B在第四象限且ABC的面積為60時,求平移的距離AA的長;

ⅱ)在平移過程中,當ABC是以AB為一條直角邊的直角三角形時,求出所有滿足條件的點A的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,CE平分∠BCD,且交AD于點E,AF∥CE,且交BC于點F

1)求證:△ABF≌△CDE;

2)如圖,若∠B=52°,求∠1的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個質(zhì)地均勻的轉盤被分成3份,分別標有數(shù)字1、2、3,其中標有數(shù)字1、2的扇形的圓心角均為.轉動轉盤,當它自動停止后,指針指向的數(shù)字即為轉出的數(shù)字,此時稱為轉動轉盤一次(指針指向兩個扇形的分界線,則不計轉動次數(shù)重新轉動轉盤,直到指針指向一個扇形的內(nèi)部為止).

1)轉動轉盤一次,求轉出數(shù)字1的概率;

2)轉動轉盤兩次,用樹狀圖或列表法求這兩次轉出數(shù)字之積等于9的概率.

查看答案和解析>>

同步練習冊答案