【題目】我縣某校在踐行“社會(huì)主義核心價(jià)值觀”演講比賽中,對(duì)名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計(jì),結(jié)果如表所示:

(1)求a的值;

(2)若用扇形圖來(lái)描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對(duì)應(yīng)的扇形圖的圓心角大;

(3)將在第一組內(nèi)的兩名選手記為:A1A2,在第四組內(nèi)的兩名選手記為:B1、B2,從這兩組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求第一組至少有1名選手被選中的概率.

【答案】(1)9;(2)162°;(3) .

【解析】分析:1)根據(jù)被調(diào)查人數(shù)為20和表格中的數(shù)據(jù)可以求得a的值;

2)根據(jù)表格中的數(shù)據(jù)可以得到分?jǐn)?shù)在8m9內(nèi)所對(duì)應(yīng)的扇形圖的圓心角

3)根據(jù)題意可以寫(xiě)出所有的可能性,從而可以得到第一組至少有1名選手被選中的概率.

詳解:(1)由題意可得

a=20272=9,a的值是9;

2)由題意可得

分?jǐn)?shù)在8m9內(nèi)所對(duì)應(yīng)的扇形圖的圓心角為360°×=162°;

3)由題意可得所有的可能性如下圖所示

故第一組至少有1名選手被選中的概率是=,即第一組至少有1名選手被選中的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全運(yùn)會(huì)射擊比賽的選拔賽中,運(yùn)動(dòng)員甲10次射擊成績(jī)的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖如下:

命中環(huán)數(shù)

10

9

8

7

命中次數(shù)


3

2


1)根據(jù)統(tǒng)計(jì)表(圖)中提供的信息,補(bǔ)全統(tǒng)計(jì)表及扇形統(tǒng)計(jì)圖;

2)已知乙運(yùn)動(dòng)員10次射擊的平均成績(jī)?yōu)?/span>9環(huán),方差為12,如果只能選一人參加比賽,你認(rèn)為應(yīng)該派誰(shuí)去?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)填入相應(yīng)的集合中:

10,,3.14, 0.6,0, 75%, (5),

正數(shù)集合:{ …};

負(fù)數(shù)集合:{ …}

整數(shù)集合:{ …};

有理數(shù)集合:{ …}

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=- (x-2)2+7,當(dāng)mxnmn<0時(shí),y的最小值為2m,最大值為2n,則m+n的值為( )

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BEAC于點(diǎn)F,交邊AD于點(diǎn)E,連結(jié)DF,若點(diǎn)EAD的中點(diǎn),則DF的長(zhǎng)為__________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某學(xué)校一教學(xué)樓高AB=15米,在它的正前方有一旗桿EF,從教學(xué)樓頂端A測(cè)得旗桿頂端E的俯角為30°,旗桿低端F到大樓前梯坎底邊的距離CF=12米,梯坎坡長(zhǎng)BC=6.5米,梯坎坡度i=1:2.4,求旗桿EF的高度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ACB=90°,∠BAC=60°,BC=2,DAB的中點(diǎn),直線BMAC,E是邊CA延長(zhǎng)線上一點(diǎn),將△EDC沿CD翻折得到△EDC,射線DE′交直線BM于點(diǎn)F

1)如圖1,當(dāng)點(diǎn)E′與點(diǎn)F重合時(shí),求證:四邊形ABEC為平行四邊形;

2)如圖2,延長(zhǎng)ED交線段BF于點(diǎn)G

①設(shè)BG=x,GF=y,求yx的函數(shù)關(guān)系式;

②若△DFG的面積為3,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,對(duì)角線AC、BD相交于點(diǎn)OABAC,AB3cm,BC5cm.點(diǎn)PA點(diǎn)出發(fā)沿AD方向勻速運(yùn)動(dòng),速度為1cm/s.連結(jié)PO并延長(zhǎng)交BC于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t(0t5)

(1)當(dāng)t為何值時(shí),四邊形ABQP是平行四邊形?

(2)設(shè)四邊形OQCD的面積為y(cm2),求yt之間的函數(shù)關(guān)系式;

(3)是否存在某一時(shí)刻t,使點(diǎn)O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

  備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)開(kāi)展獻(xiàn)愛(ài)心扶貧活動(dòng),將購(gòu)買(mǎi)的60噸大米運(yùn)往貧困地區(qū)幫扶貧困居民,現(xiàn)有甲、乙兩種貨車(chē)可以租用.已知一輛甲種貨車(chē)和3輛乙種貨車(chē)一次可運(yùn)送29噸大米,2輛甲種貨車(chē)和3輛乙種貨車(chē)一次可運(yùn)送37噸大米.

(1)求每輛甲種貨車(chē)和每輛乙種貨車(chē)一次分別能裝運(yùn)多少?lài)嵈竺祝?/span>

(2)已知甲種貨車(chē)每輛租金為500元,乙種貨車(chē)每輛租金為450元,該企業(yè)共租用8輛貨車(chē).請(qǐng)求出租用貨車(chē)的總費(fèi)用w(元)與租用甲種貨車(chē)的數(shù)量x(輛)之間的函數(shù)關(guān)系式.

(3)在(2)的條件下,請(qǐng)你為該企業(yè)設(shè)計(jì)如何租車(chē)費(fèi)用最少?并求出最少費(fèi)用是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案