【題目】如圖,在平面直角坐標系xoy中,橢圓 的右頂點和上頂點分別為點A,B,M是線段AB的中點,且 ..
(1)求橢圓的離心率;
(2)若a=2,四邊形ABCD內接于橢圓,AB∥CD,記直線AD,BC的斜率分別為k1 , k2 , 求證:k1k2為定值.
【答案】
(1)解:A(a,0),B(0,b),線段AB的中點M .
=(﹣a,b), = .
∵ .
∴ + =﹣ b2,化為:a=2b.
∴橢圓的離心率e= = =
(2)解:證明:由a=2,可得b=1,
∴橢圓的標準方程為: +y2=1,A(2,0),B(0,1).
直線BC的方程為:y=k2x+1,聯(lián)立 ,化為:(1+ )x2+8k2x=0,
解得xC= ,∴yC= .即C( , ).
直線AD的方程為:y=k1(x﹣2),聯(lián)立 ,化為: x2﹣16 x+ ﹣4=0,
∴2xD= ,解得xD= ,yD= ,可得D( , )
∴kCD= =﹣ ,
化為:1﹣16 +2k1﹣2k2+8 ﹣8 =0.
∴ (4k1k2+4k1﹣4k2+1)=0,
∴k1k2= .
【解析】(1)A(a,0),B(0,b),線段AB的中點M .利用 與離心率的計算公式即可得出.(2)由a=2,可得b=1,可得橢圓的標準方程為: +y2=1,A(2,0),B(0,1).直線BC的方程為:y=k2x+1,直線AD的方程為:y=k1(x﹣2),分別于同一方程聯(lián)立解得C,D,坐標,利用kCD= =﹣ ,即可得出.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線相交于點O,E、F、G、H分別是AD、BD、BC、AC的中點,要使四邊形EFGH是菱形,則四邊形ABCD需滿足的條件是( )
A.AB=AD
B.AC=BD
C.AD=BC
D.AB=CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.
(1)求證:AM是⊙O的切線;
(2)若DC=2,求圖中陰影部分的面積(結果保留π和根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖示二次函數(shù)y=ax2+bx+c的對稱軸在y軸的右側,其圖象與x軸交于點A(﹣1,0)與點C(x2 , 0),且與y軸交于點B(0,﹣2),小強得到以下結論:①0<a<2;②﹣1<b<0;③c=﹣1;④當|a|=|b|時x2> ﹣1;以上結論中正確結論的序號為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸相交于A、B兩點,頂點為點M.則下列說法不正確的是( )
A.a<0
B.當x=﹣1時,函數(shù)y有最小值4
C.對稱軸是直線=﹣1
D.點B的坐標為(﹣3,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館客房部有60個房間供游客居住,當每個房間的定價為每天200元時,房間可以住滿.當每個房間每天的定價每增加10元時,就會有一個房間空閑.對有游客入住的房間,賓館需對每個房間每天支出20元的各種費用. 設每個房間每天的定價增加x元.求:
(1)房間每天的入住量y(間)關于x(元)的函數(shù)關系式;
(2)該賓館每天的房間收費p(元)關于x(元)的函數(shù)關系式;
(3)該賓館客房部每天的利潤w(元)關于x(元)的函數(shù)關系式;當每個房間的定價為每天多少元時,w有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù) 的圖象經過點 ,若一次函數(shù)y=x+1的圖象平移后經過該反比例函數(shù)圖象上的點B(2,m),求平移后的一次函數(shù)圖象與x軸的交點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y=x2+3x+2的圖象如圖1所示,根據(jù)圖象回答問題:
(1)當x時,x2+3x+2>0;
(2)在上述問題的基礎上,探究解決新問題: ①函數(shù)y= 的自變量x的取值范圍是;
②如表是函數(shù)y= 的幾組y與x的對應值.
x | … | ﹣7 | ﹣6 | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 3 | 4 | … |
y | … | 5.477… | 4.472… | 2.449… | 1.414… | 0 | 0 | 1.414… | 2.449… | 4.472… | 5.477… | … |
如圖2,在平面直角坐標系xOy中,描出了上表中各對對應值為坐標的點的大概位置,請你根據(jù)描出的點,畫出該函數(shù)的圖象:
③寫出該函數(shù)的一條性質: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com