【題目】如圖,已知AB∥CD,直線EF分別交直線AB、CD于點(diǎn)G、H,GI、HI分別平分∠BGH、∠GHD.
(1)求證GI⊥HI.
(2)請用文字概括(1)所證明的命題: .
【答案】(1)見解析;(2)兩直線平行,同旁內(nèi)角的角平分線互相垂直
【解析】
利用角平分線、平行線的性質(zhì)及三角形的內(nèi)角和定理,先求出∠I的度數(shù),再說明兩直線的關(guān)系.
證明:(1)∵ABCD,
∴∠BGH+∠GHD=180°.
∵∠HGI=∠HGB,∠GHI=∠GHD,
∴∠HGI+∠GHI=∠HGB+∠GHD
=(∠HGB+∠GHD)
=90°.
∵∠HGI+∠KHI+∠I=180°,
∴∠I=90°.
∴GIHI.
(2)文字可概況為:兩直線平行,同旁內(nèi)角的角平分線互相垂直.
故答案為:兩直線平行,同旁內(nèi)角的角平分線互相垂直.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)某學(xué)校“智慧方園”數(shù)學(xué)社團(tuán)遇到這樣一個題目:
如圖1,在△ABC中,點(diǎn)O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.
經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn)B作BD∥AC,交AO的延長線于點(diǎn)D,通過構(gòu)造△ABD就可以解決問題(如圖2).
請回答:∠ADB= °,AB= .
(2)請參考以上解決思路,解決問題:
如圖3,在四邊形ABCD中,對角線AC與BD相交于點(diǎn)O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店計(jì)劃購進(jìn)甲、乙兩種高檔水果共400千克,每千克的售價(jià)、成本與購進(jìn)數(shù)量(千克)之間關(guān)系如表:
每千克售價(jià)(元) | 每千克成本(元) | |
甲 | ﹣0.1x+100 | 50 |
乙 | ﹣0.2x+120(0<x≤200) | 60 |
(200<x≤400) |
(1)若甲、乙兩種水果全部售完,求水果店獲得總利潤y(元)與購進(jìn)乙種水果x(千克)之間的函數(shù)關(guān)系式(其他成本不計(jì));
(2)若購進(jìn)兩種水果都不少于100千克,當(dāng)兩種水果全部售完,水果能獲得的最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用圖象反映儲油罐內(nèi)的油量V與輸油管開啟時(shí)間t的函數(shù)關(guān)系.觀察這個圖象,以下結(jié)論正確的有________________.
①隨著輸油管開啟時(shí)間的增加,儲油罐內(nèi)的油量在減少;
②輸油管開啟10分鐘時(shí),儲油罐內(nèi)的油量是80立方米;
③如果儲油罐內(nèi)至少存油40立方米,那么輸油管最多可以開啟36分鐘;
④輸油管開啟30分鐘后,儲油罐內(nèi)的油量只有原油量的一半.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)A在點(diǎn)B左側(cè)),
(1)若拋物線的對稱軸是直線x=1,求出點(diǎn)A和點(diǎn)B的坐標(biāo),并畫出此時(shí)函數(shù)的圖象;
(2)當(dāng)已知點(diǎn)P(m,2),Q(-m,2m-1).若拋物線與線段PQ恰有一個公共點(diǎn),結(jié)合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形紙片ABCD,怎樣折疊,能使邊AB被三等分?
以下是小紅的研究過程.
思考過程 | 要使邊AB被三等分,若從邊DC上考慮,就是要折出DM=DC, 也就是要折出DM=AB, 當(dāng)DB、AM相交于F時(shí),即要折出對角線上的DF=DB.那么… |
折疊方法和示意圖 | ①折出DB;對折紙片,使D、B重合,得到的折痕與DB相交于點(diǎn)E;繼續(xù)折疊紙片,使D、B與E重合,得到的折痕與DB分別相交于點(diǎn)F、G; ②折出AF、CG,分別交邊CD、AB于M、Q; ③過M折紙片,使D落在MC上,得到折痕MN,則邊AB被N、Q三等分. |
(1)整理小紅的研究過程,說明AN=NQ=QB;
(2)用一種與小紅不同的方法折疊,使邊AB被三等分.(需簡述折疊方法并畫出示意圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一個3×3的正方形網(wǎng)格,其右下角格點(diǎn)(小正方形的頂點(diǎn))A的坐標(biāo)為(﹣1,1),左上角格點(diǎn)B的坐標(biāo)為(﹣4,4),若分布在過定點(diǎn)(﹣1,0)的直線y=﹣k(x+1)兩側(cè)的格點(diǎn)數(shù)相同,則k的取值可以是( )
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的函數(shù)圖象如圖,點(diǎn)位于坐標(biāo)原點(diǎn),點(diǎn)在軸的正半軸上,點(diǎn)在二次函數(shù)位于第一象限的圖象上,,,,…都是直角頂點(diǎn)在拋物線上的等腰直角三角形,則的斜邊長為( )
A.20B.C.22D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠CBG=∠A,CD為直徑,OC與AB相交于點(diǎn)E,過點(diǎn)E作EF⊥BC,垂足為F,延長CD交GB的延長線于點(diǎn)P,連接BD.
(1)求證:PG與⊙O相切;
(2)若=,求的值;
(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com