【題目】潮州市某學(xué)校為了改善辦學(xué)條件,購置一批電子白板和臺(tái)式電腦合共24臺(tái).經(jīng)招投標(biāo),一臺(tái)電子白板每臺(tái)9000元,一臺(tái)臺(tái)式電腦每臺(tái)3000元,設(shè)學(xué)校購買電子白板和臺(tái)式電腦總費(fèi)用為元,購買了臺(tái)電子白板,并且臺(tái)式電腦的臺(tái)數(shù)不超過電子白板臺(tái)數(shù)的3倍.
(1)請(qǐng)求出與的函數(shù)解析式,并直接寫出的取值范圍
(2)請(qǐng)問當(dāng)購買多少臺(tái)電子白板時(shí),學(xué)校購置電子白板和臺(tái)式電腦的總費(fèi)用最少,最少多少錢?
【答案】(1)(,且為整數(shù));(2)當(dāng)購買電子白板6臺(tái),臺(tái)式電腦18臺(tái)學(xué)?傎M(fèi)用最少錢,最少是108000元.
【解析】
(1)根據(jù)題意“電子白板和臺(tái)式電腦合共24臺(tái),一臺(tái)電子白板每臺(tái)9000元,一臺(tái)臺(tái)式電腦每臺(tái)3000元”即可列出與的函數(shù)解析式,又根據(jù)“臺(tái)式電腦的臺(tái)數(shù)不超過電子白板臺(tái)數(shù)的3倍”求出x的取值范圍;
(2)根據(jù)一次函數(shù)的性質(zhì)即可得隨的增大而增大,所以當(dāng)時(shí),有最小值.
解:(1)依題意可得:
,
∵臺(tái)式電腦的臺(tái)數(shù)不超過電子白板臺(tái)數(shù)的3倍,
∴24-x≤3x
x≥6,
則x的取值范圍為,且為整數(shù);
(2)∵,,
∴隨的增大而增大,∴當(dāng)時(shí),有最小值.
(元)
答:當(dāng)購買電子白板6臺(tái),臺(tái)式電腦18臺(tái)學(xué)?傎M(fèi)用最少錢,最少是108000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)的圖象如圖所示,以下結(jié)論:
①常數(shù)m<﹣1;
②在每個(gè)象限內(nèi),y隨x的增大而增大;
③若A(﹣1,h),B(2,k)在圖象上,則h<k;
④若P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上.
其中正確的是( )
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD被分成六個(gè)小的正方,已知中間一個(gè)小正方形的邊長為1,其它正方形的邊長分別為a、b、c、d.觀察圖形并探索:(1)b=_____,d=_____;(用含a的代數(shù)式表示)(2)長方形ABCD的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題(直接寫出答案)
(1)2+(﹣2)= ;
(2)1﹣3= ;
(3)(﹣1)×(﹣3)= ;
(4)12÷(﹣3)= ;
(5)﹣32×= ;
(6)(﹣4)2018×(﹣0.25)2019= ;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,BD=2,E、F分別是邊AD,CD上的兩個(gè)動(dòng)點(diǎn),且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC,∠ABC=120°,AC=2,⊙O是△ABC的外接圓,D是優(yōu)弧AmC上任意一點(diǎn)(不包括A,C),記四邊形ABCD的周長為y,BD的長為x,則y關(guān)于x的函數(shù)關(guān)系式是( 。
A. y=x+4 B. y=x+4 C. y=x2+4 D. y=x2+4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,E、F是對(duì)角線AC上的兩點(diǎn),∠1=∠2.
(1)求證:AE=CF;
(2)求證:四邊形EBFD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ACB的平分線交AB于點(diǎn)O,以O為圓心的⊙O與AC相切于點(diǎn)D.
(1)求證:⊙O與BC相切;
(2)當(dāng)AC=3,BC=6時(shí),求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角項(xiàng)點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點(diǎn)O以每秒5°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周.如圖2,經(jīng)過t秒后,ON落在OC邊上,則t= 秒(直接寫結(jié)果).
(2)在(1)的條件下,若三角板繼續(xù)轉(zhuǎn)動(dòng),同時(shí)射線OC也繞O點(diǎn)以每秒10°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,當(dāng)OC轉(zhuǎn)動(dòng)9秒時(shí),求∠MOC的度數(shù).
(3)在(2)的條件下,它們繼續(xù)運(yùn)動(dòng)多少秒時(shí),∠MOC=35°?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com