【題目】如圖,已知在△ABC中,AB=AC,∠A=36°,BD為∠ABC的平分線,則的值等于___________
【答案】
【解析】
求出AD=BD=BC,證△ABC∽△BDC,推出,求出BC2=AD2=AC×(AC-AD),求出AD=AC,代入求出即可.
解:∵AB=AC,∠A=36°,
∴∠C=∠ABC=(180°-∠A)=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=36°=∠A,
∴AD=BD,
∵∠C=72°,∠CBD=36°,
∴由三角形內(nèi)角和定理得:∠BDC=72°=∠C,
∴BD=BC=AD,
∵∠C=∠C,∠CBD=∠A,
∴△ABC∽△BDC,
∴,
∴BC2=AC×CD,
∵AD=BD=BC,
∴AD2=AC×CD=AC×(AC-AD),
解關(guān)于AD的方程得:AD=AC,
∴;
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別A(1,3),B(2,1),C(4,2).
(1)將△ABC以原點(diǎn)O為旋轉(zhuǎn)中心旋轉(zhuǎn)180°得到△A1B1C1,畫出△A1B1C1;
(2)平移△ABC,使點(diǎn)A的對應(yīng)點(diǎn)A2坐標(biāo)為(5,﹣5),畫出平移后的△A2B2C2;
(3)若將△A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2,請直接寫出這個點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點(diǎn)E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點(diǎn)G,CE的延長線交DA的延長線于點(diǎn)H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是內(nèi)的一點(diǎn),過點(diǎn)分別作直線平行于的各邊,所形成的三個小三角形,,(圖中陰影部分)的面積分別是4、9、49,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BA=BC=3,將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)60°得△MNC,連結(jié)BM ,求BM 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】傳統(tǒng)節(jié)日“端午節(jié)”的早晨,小文媽媽為小文準(zhǔn)備了四個粽子作早點(diǎn):一個棗餡粽,一個肉餡粽,兩個花生餡粽,四個粽子除內(nèi)部餡料不同外,其它一切均相同.若小文早餐吃了兩個粽子,求這兩個粽子剛好都是花生餡粽的概率為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=ax2+bx+c的圖象如圖所示,那么關(guān)于x的一元二次方程ax2+bx+c-3=0的根的情況是( )
A. 有兩個不相等的實(shí)數(shù)根
B. 有兩個異號的實(shí)數(shù)根
C. 有兩個相等的實(shí)數(shù)根
D. 沒有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)活動課上,老師讓同學(xué)們到操場上測量旗桿的高度,然后回來交流各自的測量方法.小芳的測量方法是:拿一根高3.5米的竹竿直立在離旗桿27米的C處(如圖),然后沿BC方向走到D處,這時目測旗桿頂部A與竹竿頂部E恰好在同一直線上,又測得C、D兩點(diǎn)的距離為3米,小芳的目高為1.5米,這樣便可知道旗桿的高.你認(rèn)為這種測量方法是否可行?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A在反比例函數(shù)(x>0)的圖像上,過點(diǎn)A作AC⊥x軸,垂足是C,AC=OC.一次函數(shù)y=kx+b的圖像經(jīng)過點(diǎn)A,與y軸的正半軸交于點(diǎn)B.
(1)求點(diǎn)A的坐標(biāo);
(2)若四邊形ABOC的面積是,求一次函數(shù)y=kx+b的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com