【題目】如圖,△DAC和△EBC均是等邊三角形,AE、BD分別與CD、CE交于點(diǎn)M、N,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正確結(jié)論的個(gè)數(shù)是( )
A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)
【答案】B
【解析】解:∵△DAC和△EBC均是等邊三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠BCD,
在△ACE和△BCD中
∴△ACE≌△DCB(SAS);∴①正確;
∵∠ACD=∠BCE=60°,
∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,
∵△ACE≌△DCB,
∴∠NDC=∠CAM,
在△ACM和△DCN中
∴△ACM≌△DCN(ASA),
∴CM=CN,AM=DN,∴②正確;
∵△ADC是等邊三角形,
∴AC=AD,
∠ADC=∠ACD,
∵∠AMC>∠ADC,
∴∠AMC>∠ACD,
∴AC>AM,
即AC>DN,∴③錯(cuò)誤;
故選B.
根據(jù)等邊三角形性質(zhì)得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根據(jù)SAS證△ACE≌△DCB,推出∠NDC=∠CAM,求出∠DCE=∠ACD,證△ACM≌△DCN,推出CM=CN,AM=DN,即可判斷各個(gè)結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角坐標(biāo)系內(nèi)的點(diǎn)P(x2﹣3x,4)與另一點(diǎn)Q(x﹣8,y)關(guān)于原點(diǎn)對(duì)稱,則x+y=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列一元二次方程中,兩根之和為1的是( 。
A. x2+x+1=0B. x2﹣x+3=0C. 2x2﹣x﹣1=0D. x2﹣x﹣5=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關(guān)系,并說明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y=x2﹣2x+m(m為常數(shù))與x軸沒有公共點(diǎn),則實(shí)數(shù)m的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:
①abc>0
②4a+2b+c>0
③4ac﹣b2<8a
④<a<
⑤b>c.
其中含所有正確結(jié)論的選項(xiàng)是( )
A.①③ B.①③④ C.②④⑤ D.①③④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com