【題目】如圖,△DAC和△EBC均是等邊三角形,AE、BD分別與CD、CE交于點(diǎn)M、N,有如下結(jié)論:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正確結(jié)論的個(gè)數(shù)是(

A.3個(gè)
B.2個(gè)
C.1個(gè)
D.0個(gè)

【答案】B
【解析】解:∵△DAC和△EBC均是等邊三角形,
∴AC=CD,BC=CE,∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠BCD,
在△ACE和△BCD中

∴△ACE≌△DCB(SAS);∴①正確;
∵∠ACD=∠BCE=60°,
∴∠DCE=180°﹣60°﹣60°=60°=∠ACD,
∵△ACE≌△DCB,
∴∠NDC=∠CAM,
在△ACM和△DCN中

∴△ACM≌△DCN(ASA),
∴CM=CN,AM=DN,∴②正確;
∵△ADC是等邊三角形,
∴AC=AD,
∠ADC=∠ACD,
∵∠AMC>∠ADC,
∴∠AMC>∠ACD,
∴AC>AM,
即AC>DN,∴③錯(cuò)誤;
故選B.

根據(jù)等邊三角形性質(zhì)得出AC=CD,BC=CE,∠ACD=∠BCE=60°,求出∠ACE=∠BCD,根據(jù)SAS證△ACE≌△DCB,推出∠NDC=∠CAM,求出∠DCE=∠ACD,證△ACM≌△DCN,推出CM=CN,AM=DN,即可判斷各個(gè)結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直角坐標(biāo)系內(nèi)的點(diǎn)Px23x,4)與另一點(diǎn)Qx8,y)關(guān)于原點(diǎn)對(duì)稱,則x+y_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列一元二次方程中,兩根之和為1的是( 。

A. x2+x+10B. x2x+30C. 2x2x10D. x2x50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a是有理數(shù),那么-8a>-5a。()

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,則∠CDF=°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果a為有理數(shù),則a>-a。()

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,

(1)試判斷DG與BC的位置關(guān)系,并說明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線y=x2﹣2x+m(m為常數(shù))與x軸沒有公共點(diǎn),則實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:

①abc>0

②4a+2b+c>0

③4acb2<8a

<a<

⑤b>c.

其中含所有正確結(jié)論的選項(xiàng)是(

A.①③ B.①③④ C.②④⑤ D.①③④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案