已知正、反比例函數(shù)的圖象都經(jīng)過點(-2,4),則它們的解析式為


  1. A.
    y=-2x,y=-數(shù)學(xué)公式
  2. B.
    y=-8x,y=-數(shù)學(xué)公式
  3. C.
    y=2x,y=數(shù)學(xué)公式
  4. D.
    y=8x,y=數(shù)學(xué)公式
A
分析:分別將點(-2,4)代入正比例函數(shù)和反比例函數(shù)的解析式即可求得其解析式.
解答:設(shè)正比例函數(shù)的解析式為y=k1x,反比例函數(shù)的解析式為y=,
∵圖象都經(jīng)過點(-2,4),
∴k1=4÷(-2)=-2,k2=-2×4=-8
故選A.
點評:本題考查了待定系數(shù)法求正、反比例函數(shù)的解析式,因為只有一個待定系數(shù),所以只需知道經(jīng)過的一點即可求得反比例函數(shù)的解析式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知正、反比例函數(shù)的圖象都經(jīng)過點(-2,4),則它們的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年河南省中考數(shù)學(xué)熱身卷(二)(解析版) 題型:解答題

(1)閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲担
對于任意正實數(shù)a、b,可作如下變形a+b==-+=+,
又∵≥0,∴+≥0+,即a+b≥
根據(jù)上述內(nèi)容,回答下列問題:在a+b≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,當(dāng)且僅當(dāng)a、b滿足______時,a+b有最小值
(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b,試根據(jù)圖形驗證a+b≥成立,并指出等號成立時的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖象上一點,A點的橫坐標(biāo)為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連接DF、EF,求四邊形ADFE面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省無錫市江陰高級中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(1)閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲担
對于任意正實數(shù)a、b,可作如下變形a+b==-+=+,
又∵≥0,∴+≥0+,即a+b≥
根據(jù)上述內(nèi)容,回答下列問題:在a+b≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,當(dāng)且僅當(dāng)a、b滿足______時,a+b有最小值
(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b,試根據(jù)圖形驗證a+b≥成立,并指出等號成立時的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖象上一點,A點的橫坐標(biāo)為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連接DF、EF,求四邊形ADFE面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(32)(解析版) 題型:解答題

(1)閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲担
對于任意正實數(shù)a、b,可作如下變形a+b==-+=+
又∵≥0,∴+≥0+,即a+b≥
根據(jù)上述內(nèi)容,回答下列問題:在a+b≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,當(dāng)且僅當(dāng)a、b滿足______時,a+b有最小值
(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b,試根據(jù)圖形驗證a+b≥成立,并指出等號成立時的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖象上一點,A點的橫坐標(biāo)為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連接DF、EF,求四邊形ADFE面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案