解:(1)過(guò)O作OOE⊥于E,連接OA
在Rt△AEO中,∠EAO=30°
AE=
∴
∴OA=2;
(2)連接CD,則∠ABC+∠ADC=180°
又∠ACB+∠ACP=180°,∠ABC=∠ACB=60°
∴∠ADC=∠ACP=120°
又∵∠CAD=∠PAC
∴△ADC∽△ACP
∴
∴AC2=AD·AP
∴y==(0<x<2);
(3)假設(shè)D點(diǎn)在運(yùn)動(dòng)的過(guò)程中存在這樣的位置,使得△DBP成為以DB,DP為腰的等腰三角形,那么DB=DP
∵∠BDC=∠BAC=60°,∠CDP=∠ABC=60°
∴∠BDC=∠CDP
∵CD⊥BP
∴DB是圓的直徑,BD=4,DP=4
∵DP=AP﹣AD=y﹣x=﹣x=4
即x2+4x-12=0
∵△=42﹣4 ×(-12)=64>0
∴關(guān)于x的方程x2+4x-12=0有兩個(gè)不相等的實(shí)根,說(shuō)明假設(shè)成立
∴x1=2,x2=-6(線段不能為負(fù),舍去)
∴D點(diǎn)在運(yùn)動(dòng)的過(guò)程中存在這樣的位置:即當(dāng)AD=2時(shí),△BDP成為以BD,PD為腰的等腰三角形。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com