【題目】如圖,△ABC在直角坐標(biāo)系中,

1)請寫出各點的坐標(biāo);

2)若把△ABC向上平移2個單位,再向左平移1個單位得到,在圖中畫出三角形ABC變化后的位置,寫出A、BC的坐標(biāo);

3)求出△ABC的面積.

【答案】1A-2,-2),B3,1),C0,2); 2見解析,A′-30)、B′2,3),C′-14); 37

【解析】

1)根據(jù)平面直角坐標(biāo)系寫出各點的坐標(biāo)即可;
2)根據(jù)網(wǎng)格結(jié)構(gòu)找出點AB、C平移后的對應(yīng)點A′B′、C′的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點A′、B′C′的坐標(biāo);
3)利用ABC所在的矩形的面積減去四周三個直角三角形的面積,列式計算即可得解.

解:觀察平面直角坐標(biāo)系得:(1A-2-2),B31),C0,2);

2A′B′C′如圖所示,

A′-30)、B′2,3),C′-1,4);
3ABC的面積=5×4-×2×4-×5×3-×1×3,
=20-4-7.5-1.5
=20-13,
=7

故答案為:(1A-2,-2),B3,1),C02); 2見解析,A′-3,0)、B′2,3),C′-1,4); 37

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點CCF平分∠DCEDE于點F

1)求證:CF∥AB

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動中,學(xué)校準(zhǔn)備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根

據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖.

請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調(diào)查中,一共調(diào)查了   名同學(xué);

(2)條形統(tǒng)計圖中,m=   ,n=   ;

(3)扇形統(tǒng)計圖中,藝術(shù)類讀物所在扇形的圓心角是   度;

(4)學(xué)校計劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計學(xué)校購買其他類讀物多少冊比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:如圖,在直角坐標(biāo)系中,有菱形OABC,A點的坐標(biāo)為(10,0),對角線OB、AC相交于D點,雙曲線y=(x0)經(jīng)過D點,交BC的延長線于E點,且OBAC=160,有下列四個結(jié)論:

①雙曲線的解析式為y=(x0);

②E點的坐標(biāo)是(5,8);

③sinCOA=;

④AC+OB=12

其中正確的結(jié)論有 (填上序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動,第1次從原點運(yùn)動到點(1,1),第2次接著運(yùn)動到點(2,0),第3次接著運(yùn)動到點(3,2),…,按這樣的運(yùn)動規(guī)律,經(jīng)過第2018次運(yùn)動后,動點P的坐標(biāo)是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:

4a+b=0;9a+c3b;8a+7b+2c0;④當(dāng)x﹣1時,y的值隨x值的增大而增大.其中正確的結(jié)論有 (填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD,點MN分別是AB、CD上兩點,點GAB、CD之間,連接MG、NG

1)如圖1,若GMGN,求∠AMG+∠CNG的度數(shù);

2)如圖2,若點PCD下方一點,MG平分∠BMP,ND平分∠GNP,已知∠BMG30°,求∠MGN+∠MPN的度數(shù);

3)如圖3,若點EAB上方一點,連接EM、EN,且GM的延長線MF平分∠AME,NE平分∠CNG2MEN+∠MGN105°,求∠AME的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點,點Ax軸上,點B的橫坐標(biāo)為-8

1)求該拋物線的解析式;

2)點P是直線AB上方的拋物線上一動點(不與點AB重合),過點Px軸的垂線,垂足為C,交直線AB于點D,作PEAB于點E

設(shè)PDE的周長為l,點P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;

連接PA,以PA為邊作如圖所示一側(cè)的正方形APFG.隨著點P的運(yùn)動,正方形的大小、位置也隨之改變.當(dāng)頂點FG恰好落在y軸上時,求出對應(yīng)的點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°AB=6cm,BC=8cmP從點A開始沿AB邊向B1cm/s的速度移動,點QB點開始沿BC邊向點C2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),

1)如果P、Q同時出發(fā),幾秒后,可使PBQ的面積為8平方厘米?

2)線段PQ能否將ABC分成面積相等的兩部分?若能,求出運(yùn)動時間;若不能說明理由.

查看答案和解析>>

同步練習(xí)冊答案