精英家教網 > 初中數學 > 題目詳情
11、若⊙O1與⊙O2的半徑分別5和4,如果兩圓內切,那么圓心距d的值是
1
分析:兩圓相切時,有兩種情況:內切和外切.兩圓外切,則圓心距等于兩圓半徑之和;兩圓內切,則圓心距等于兩圓半徑之差.
解答:解:當兩圓內切時,則另一圓的半徑=5-4=1.
故答案為:1.
點評:本題考查了兩圓相切時,兩圓的半徑與圓心距的關系,注意有兩種情況.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標原點,建立平面直角坐標系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3
3
,OB=3.
(1)求經過O1、C、O2三點的拋物線的解析式;
(2)設直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
(3)在(2)的條件下,點D在y軸負半軸上.當點D的坐標為何值時,四邊形M精英家教網DNC是矩形?

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•甘孜州)如圖,兩個半圓外切,它們的圓心都在x軸的正半軸上,并都與直線y=x相切.若半圓O1的半徑為1,則半圓O2的半徑R=
3+2
2
3+2
2

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標原點,建立平面直角坐標系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3數學公式,OB=3.
(1)求經過O1、C、O2三點的拋物線的解析式;
(2)設直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
(3)在(2)的條件下,點D在y軸負半軸上.當點D的坐標為何值時,四邊形MDNC是矩形?

查看答案和解析>>

科目:初中數學 來源:1999年全國中考數學試題匯編《二次函數》(02)(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標原點,建立平面直角坐標系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3,OB=3.
(1)求經過O1、C、O2三點的拋物線的解析式;
(2)設直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
(3)在(2)的條件下,點D在y軸負半軸上.當點D的坐標為何值時,四邊形MDNC是矩形?

查看答案和解析>>

科目:初中數學 來源:1999年黑龍江省哈爾濱市中考數學試卷(解析版) 題型:解答題

(1999•哈爾濱)已知:如圖,⊙O1與⊙O2外切于點O,以直線O1O2為x軸,O為坐標原點,建立平面直角坐標系.在x軸上方的兩圓的外公切線AB與⊙O1相切于點A,與⊙O2相切于點B,直線AB交y軸于點c,若OA=3,OB=3.
(1)求經過O1、C、O2三點的拋物線的解析式;
(2)設直線y=kx+m與(1)中的拋物線交于M、N兩點,若線段MN被y軸平分,求k的值;
(3)在(2)的條件下,點D在y軸負半軸上.當點D的坐標為何值時,四邊形MDNC是矩形?

查看答案和解析>>

同步練習冊答案