【題目】二次函數(shù)y3x12+2的最小值是(  )

A.2B.1C.1D.2

【答案】A

【解析】

根據(jù)完全平方式和頂點式的意義,可直接得出二次函數(shù)的最小值.

解:由于(x12≥0,

所以當(dāng)x1時,函數(shù)取得最小值為2,

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中與多項式2x﹣3y+4z相等的是( )
A.2x+(3y﹣4z)
B.2x﹣(3y﹣4z)
C.2x+(3y+4z)
D.2x﹣(3y+4z)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的對角線相交于點O,延長AB至點E,使BE=AB,連結(jié)CE.

(1)求證:BD=EC;

(2)若AC=2, , 求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB=90°,ACBC,點DAC的延長線上,點EBC邊上,且BE=AD,

(1) 如圖1,連接AEDE,當(dāng)∠AEB=110°時,求∠DAE的度數(shù);

(2) 在圖2中,點DAC延長線上的一個動點,點EBC邊上(不與點C重合),且BE=AD,連接AEDE,將線段AE繞點E順時針旋轉(zhuǎn)90°得到線段EF,連接BF,DE.

①依題意補全圖形;

②求證:BF=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為10,點E在邊AB上,連接ED,過點D作FD⊥DE與BC的延長線相交于點F,連接EF與邊CD相交于點G,對角線BD相交于點H,若BD=BF,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABACADBC邊的中線,過點ABC的平行線,過點BAD的平行線,兩線交于點E.

1)求證:四邊形ADBE是矩形;

2)連接DE,交AB于點O,若BC=8,AO=,求cosAED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O.

(1)如圖1,連接AF、CE.求證:四邊形AFCE為菱形;
(2)如圖1,求AF的長;
(3)如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,已知點P的速度為每秒1cm,設(shè)運動時間為t秒.
①問在運動的過程中,以A、C、P、Q四點為頂點的四邊形有可能是矩形嗎?若有可能,請求出運動時間t和點Q的速度,若不可能,請說明理由;
②若點Q的速度為每秒0.8cm,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點P在第二象限,若該點到x軸的距離為3,到y(tǒng)軸的距離為1,則點P的坐標(biāo)是(
A.(﹣1,3)
B.(﹣3,1)
C.(3,﹣1)
D.(1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x,y的方程組 的解為正數(shù).
(1)求a的取值范圍;
(2)化簡|﹣4a+5|﹣|a+4|.

查看答案和解析>>

同步練習(xí)冊答案