【題目】某市農(nóng)林種植專家指導(dǎo)貧困戶種植紅梨和青棗,收獲的紅梨和青棗優(yōu)先進(jìn)入該市水果市場.已知某水果經(jīng)銷商購進(jìn)了紅梨和青棗兩種水果各10箱,分配給下屬的甲、乙兩個(gè)零售店(分別簡稱甲店、乙店)銷售.預(yù)計(jì)每箱水果的盈利情況如表
紅梨/箱 | 青棗/箱 | |
甲店 | 22元 | 34元 |
乙店 | 18元 | 26元 |
(1)若甲、乙兩店各配貨10箱,其中甲店配紅梨2箱,青棗8箱;乙店配紅梨8箱,青棗2箱,請你計(jì)算出經(jīng)銷商能盈利多少元?
(2)若甲、乙兩店各配貨10箱,且在保證乙店盈利不小于200元的條件下,請你設(shè)計(jì)出使水果經(jīng)銷商盈利最大的配貨方案.
【答案】(1)經(jīng)銷商能盈利512元;(2)盈利最大的配貨方案是甲店配紅梨3箱,青棗7箱;乙店配紅梨7箱,青棗3箱,最大盈利金額是508元.
【解析】
(1)經(jīng)銷商能盈利=水果箱數(shù)×每箱水果的盈利;
(2)根據(jù)題意得出紅梨乙店盈利×(10x)+青棗乙店盈利×x不小于200元,列出不等式,求出不等式的解集,再由經(jīng)銷商盈利y=紅梨甲店盈利×x+青棗甲店盈利×(10x)+紅梨乙店盈利×(10x)+青棗甲店盈利×x,得到 y與x的函數(shù)關(guān)系式,最后根據(jù)函數(shù)性質(zhì)求得最大盈利時(shí)x的值,便可得出結(jié)果.
(1)22×2+18×8+34×8+26×2=512(元),
所以經(jīng)銷商能盈利512元.
(2)設(shè)甲店配紅梨x箱,則甲店配青棗(10﹣x)箱,乙店配紅梨(10﹣x)箱,乙店配青棗10﹣(10﹣x)=x箱
因?yàn)?/span>18×(10﹣x)+26x≥200,所以x≥.
經(jīng)銷商盈利為y=22x+34×(10﹣x)+18×(10﹣x)+26x=﹣4x+520.
當(dāng)x=3時(shí),y值最大,
盈利最大的配貨方案是甲店配紅梨3箱,青棗7箱;乙店配紅梨7箱,青棗3箱.
最大盈利金額是﹣4×3+520=508(元).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】校體育組為了解全校學(xué)生“最喜歡的一項(xiàng)球類項(xiàng)目”,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的不完整的統(tǒng)計(jì)圖:
請你根據(jù)統(tǒng)計(jì)圖回答下列問題:
(1)喜歡乒乓球的學(xué)生所占的百分比是多少?并請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)請你估計(jì)全校500名學(xué)生中最喜歡“排球”項(xiàng)目的有多少名?
(3)在扇形統(tǒng)計(jì)圖中,“籃球”部分所對應(yīng)的圓心角是多少度?
(4)籃球教練在制定訓(xùn)練計(jì)劃前,將從最喜歡籃球項(xiàng)目的甲、乙、丙、丁四名同學(xué)中任選兩人進(jìn)行個(gè)別座談,請用列表法或樹狀圖法求抽取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y= 在第一象限圖象上一點(diǎn),連接OA,過點(diǎn)A作AB∥x軸(點(diǎn)B在點(diǎn)A右側(cè)),連接OB,若OB平分∠AOX,且點(diǎn)B的坐標(biāo)是(8,4),則k的值是( 。
A.6B.8C.12D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a<0)與x軸交于A(﹣2,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)C,且OC=2OA.
(1)試求拋物線的解析式;
(2)直線y=kx+1(k>0)與y軸交于點(diǎn)D,與拋物線交于點(diǎn)P,與直線BC交于點(diǎn)M,記m=,試求m的最大值及此時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,點(diǎn)Q是x軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)N是坐標(biāo)平面內(nèi)的一點(diǎn),是否存在這樣的點(diǎn)Q、N,使得以P、D、Q、N四點(diǎn)組成的四邊形是矩形?如果存在,請求出點(diǎn)N的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,E是AB延長線上一點(diǎn),F是DC延長線上一點(diǎn),且滿足BF=EF,將線段EF繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得FG,過點(diǎn)B作FG的平行線,交DA的延長線于點(diǎn)N,連接NG.
求證:BE=2CF;
試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知扇形AOB的圓心角為120°,點(diǎn)C是半徑OA上一點(diǎn),點(diǎn)D是上一點(diǎn).將扇形AOB沿CD對折,使得折疊后的圖形恰好與半徑OB相切于點(diǎn)E.若∠OCD=45°,OC=+1,則扇形AOB的半徑長是( 。
A. 2+B. 2+C. 2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知開口向下的拋物線y=ax2﹣2ax+3與x軸的交點(diǎn)為A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸的交點(diǎn)為C,OC=3OA
(1)請直接寫出該拋物線解析式;
(2)如圖,D為拋物線的頂點(diǎn),連接BD、BC,P為對稱軸右側(cè)拋物線上一點(diǎn).若∠ABD=∠BCP,求點(diǎn)P的坐標(biāo)
(3)在(2)的條件下,M、N是拋物線上的動(dòng)點(diǎn).若∠MPN=90°,直線MN必過一定點(diǎn),請求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)y=的圖像上.
(1)k= ;
(2)在x軸的負(fù)半軸上存在一點(diǎn) P ,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE,直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖像上,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在蘇州園林研學(xué)時(shí),校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測量公園內(nèi)一棵樹的高度,他們在這棵樹的正前方一座樓亭前的臺(tái)階上點(diǎn)處測得樹頂端的仰角為,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)處,測得樹頂端的仰角為.已知點(diǎn)的高度為米,臺(tái)階的坡度為 (即),且三點(diǎn)在同一條直線上.請根據(jù)以上條件求出樹的高度(側(cè)傾器的高度忽略不計(jì)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com