如圖,在△ABC中,∠ACB=90°,BC=nAC,CD⊥AB于D,點P為AB邊上一動點,PE⊥AC,PF⊥BC,垂足分別為E、F.
(1)若n=2,則=______;
(2)當n=3時,連EF、DF,求的值;
(3)當n=______
【答案】分析:(1)根據(jù)∠ACB=90°,PE⊥AC,PF⊥BC,那么CEPF就是個矩形.得到CE=PF從而不難求得CE:BF的值;
(2)可通過構(gòu)建相似三角形來求解;
(3)可根據(jù)(2)的思路進行反向求解,即先通過EF,DF的比例關系,求出DE:DF的值.也就求出了CE:BF的值即tanB=AC:BC的值.
解答:解:(1)∵∠ACB=90°,PE⊥AC,PF⊥BC,
∴四邊形CEPF是矩形.
∴CE=PF.
∴CE:BF=PF:BF=tanB=AC:BC=

(2)連DE,
∵∠ACB=90°,PE⊥CA,PF⊥BC,
∴四邊形CEPF是矩形.
∴CE=PF.
==tanB.
∵∠ACB=90°,CD⊥AB,
∴∠B+∠A=90°,∠ECD+∠A=90°,
∴∠ECD=∠B,
∴△CED∽△BFD.
∴∠EDC=∠FDB.
∵∠FDB+∠CDF=90°,
∴∠CDE+∠CDF=90°.
∴∠EDF=90°.
=tanB=,
設DE=a,DF=3a,
在直角三角形EDF中,根據(jù)勾股定理可得:EF=a.


(3)
點評:本題主要考查了相似三角形的判定和性質(zhì),通過相似三角形將所求線段之間的比例關系同已知的線段間的比例關系聯(lián)系在一起是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案